La grande scienza. Cronologia scientifica: 1951-1960
1951-1960
1951
Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] A e B. H. Cartan dimostra che per un qualsiasi fascio analitico coerente F su uno spazio di Stein X si ha: (A) in ogni x∈X, la spiga Fx è generata dalle sulle proprietà dell'insieme dei campi vettoriali strutturalmente stabili sulla sfera S2. Nel ...
Leggi Tutto
La grande scienza. Fisica matematica: recenti sviluppi
Gianfausto Dell'Antonio
Fisica matematica: recenti sviluppi
La fisica matematica si può definire come la disciplina scientifica che si propone [...]
Indichiamo con xμ, μ=0,1,2,3, le coordinate spazio-temporali in un riferimento inerziale, con x0=ct, dove c . Le relazioni tra la matrice antisimmetrica F e i campi vettoriali elettrico E e magnetico B sono espresse (in opportune unità di ...
Leggi Tutto
Fisica matematica
Gianfausto Dell'Antonio
La fisica matematica si può definire come la disciplina scientifica che si propone di descrivere in termini matematici rigorosi i fenomeni fisici. La ricerca [...] Le relazioni tra la matrice antisimmetrica F e i campi vettoriali elettrico E e magnetico B sono espresse (in opportune unità negli anni Cinquanta del secolo scorso, ed era definita sullo spazio di Fock. Diamo qui alcuni dettagli per il caso del ...
Leggi Tutto
La grande scienza. Sistemi dinamici
Valentin S. Afraimovich
Leonid A. Bunimovich
Jack K. Hale
Sistemi dinamici
Il nostro Universo è formato da oggetti che si muovono nello spazio e le cui caratteristiche [...] intorno U di γ sia J il massimo insieme invariante di U. Allora, genericamente nello spazio dei campi vettoriali C1, la mappa di Poincaré per il flusso del campo vettoriale ristretta a J è coniugata topologicamente allo shift σ su Σ e l'insieme λ che ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1941-1950
1941-1950
1941
Le successioni esatte. Introdotte in una nota sui gruppi di coomologia (priva di dimostrazioni) dal polacco Witold Hurewicz ed estensivamente [...] nel suo importante articolo On conjugate convex functions introduce la mappa duale: se f è un'applicazione da uno spaziovettoriale X in ℝ, e X* è lo spazio duale di X, allora la mappa duale f * : X* → ℝ si definisce come f * (x*)=supx∈X[〈 x; x* > ...
Leggi Tutto
BURGATTI, Pietro
Enzo Pozzato
Nacque a Cento (Ferrara) il 27 febbr. 1868 da Federico e da Marietta Biegoli. Aveva abbracciato negli anni giovanili la carriera militare, che abbandonò per l'interesse [...] 7, IV (1916-17), pp. 103-12; Qualche nuovo sviluppodi calcolo vettoriale, in Boll. dell'Unione mat. ital., XIV (1935), pp. 133-142; Pluridifferenziali e rotazionali di plurivettori negli spazi Sn, in Mem. dell'Accad. delle scienze di Bologna, s.9, IV ...
Leggi Tutto
analisi
anàlisi [Der. del gr. análysis "scomporre in elementi"] [LSF] Scomposizione di un tutto, concreto o astratto, nelle parti che lo costituiscono, soprattutto a scopo di studio; si oppone a sintesi, [...] all'estensione dei risultati fondamentali dell'algebra lineare agli spazi a dimensione infinita. ◆ [ANM] A. matematica, 135 a. ◆ [ANM] A. vettoriale: lo studio degli operatori e delle funzioni vettoriali, cioè degli operatori che agiscono su vettori ...
Leggi Tutto
vettoriale
agg. [der. di vettore]. – 1. In matematica e in fisica, inerente a vettori: grandezza v., in contrapp. a scalare (o grandezza scalare), grandezza caratterizzata, oltre che da un valore numerico, anche da una direzione e da un verso,...
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...