algebra non commutativa
Luca Tomassini
Sia F un campo, ovvero un corpo commutativo. Un insieme A è detto F-algebra (o algebra su F) se è uno spaziovettoriale sul campo F (per es., i campi ℚ, ℝ, ℂ dei [...] algebra con unità su un determinato campo F allora essa è isomorfa a una sottoalgebra di L(V′) per un qualche spaziovettoriale V′ sul campo F. Sottolineiamo che la dimensione di V′ non è necessariamente finita e coincide con quella dell’algebra A ...
Leggi Tutto
spaziovettoriale topologico
Luca Tomassini
Lo sviluppo di settori dell’analisi funzionale, quali per esempio la teoria delle distribuzioni, ha mostrato che in molti casi è utile considerare spazi lineari [...] C∞([a,b]) rientra tuttavia in un’altra importante classe di spazivettoriali topologici, quella degli spazi localmente convessi. Si tratta di spazivettoriali topologici in cui ogni insieme aperto non vuoto contiene un aperto non vuoto convesso ...
Leggi Tutto
traccia
Luca Tomassini
Nel caso di un operatore lineare (matrice quadrata) di uno spaziovettoriale euclideo n-dimensionale in sé A=∣∣aij∣∣ (con aij numeri complessi e i,j=1,...,n), la traccia di A [...] A=A*), trA è uguale alla somma dei suoi autovalori. La generalizzazione del concetto di traccia al caso di spazivettoriali di dimensione infinita dotati di prodotto scalare (di Hilbert) ℋ si è dimostrata uno strumento fondamentale nello studio delle ...
Leggi Tutto
spazio duale
Luca Tomassini
Dato uno spaziovettoriale reale (o complesso) X si definisce il suo duale Y come lo spaziovettoriale reale (o complesso) costituito dai funzionali lineari su X, ovvero [...] ∈Y allora x1=x2. Il caso più importante è senza dubbio quello in cui X è uno spaziovettoriale topologico (dotato della topologia localmente convessa τ), Y è lo spazio di tutti i funzionali lineari continui su X (rispetto alla topologia τ) e (x,x′)=x ...
Leggi Tutto
generatore di un semigruppo
Luca Tomassini
Siano X uno spazio di Banach con norma ∣∣∙∣∣ e B(X) l’insieme degli operatori continui su di esso. Si dice semigruppo di operatori {T(t)∣t≥0} una famiglia [...] [2] è soddisfatta se vale la condizione di Hille-Yosida: ∣∣R(λ,A)∣∣≤M(λ−ω)−1. Il teorema di Hille-Yosida può essere generalizzato da un lato al caso di spazivettoriali topologici e dall’altro a quello di operatori non lineari.
→ Equazioni funzionali ...
Leggi Tutto
simplesso
simplèsso [Der. dell'ingl. simplex, che è dal lat. simplex -icis "semplice"] [ALG] Nella geometria, generalizzazione dei concetti di segmento, triangolo, tetraedro; precis., dati in uno spazio [...] ottenuto come baricentro di un'unica distribuzione di masse sui punti estremali di I. Questa nozione s'estende a spazivettoriali topologici a dimensione infinita, purché con topologia non troppo strana e s'incontra nella teoria delle fasi pure; in ...
Leggi Tutto
TENSORIALE, ALGEBRA e ANALISI
Dionigi Galletto
Il calcolo t., sinonimo di calcolo differenziale assoluto (v. differenziale assoluto, calcolo, XII, p. 796; tensore, XXXIII, p. 497), i cui fondamenti [...] fin qui riassunti sui tensori affini si estendono in modo ovvio al caso in cui En sia uno s. v. sul corpo complesso.
Spazivettoriali euclidei. - Uno s. v. En su R, munito di una forma bilineare simmetrica g, definita su En × En, a valori in R (ossia ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1981-1990
1981-1990
1981
Il sistema operativo MS-DOS. Tale sistema, realizzato dalla Microsoft e destinato a dominare nel suo settore, è utilizzato per la prima [...] principale è di compiere una vasta generalizzazione del concetto di dimensione che si incontra nella teoria degli spazivettoriali e dei campi algebricamente chiusi. Shelah giunge a una classificazione quasi completa delle possibili cardinalità e ...
Leggi Tutto
L'Ottocento: matematica. Immagini della matematica nell'Ottocento
Umberto Bottazzini
Immagini della matematica nell'Ottocento
Il panorama della matematica negli ultimi decenni del XIX sec. è per molti [...] Abel, e quelli di Steiner di geometria proiettiva. Per dare spazio alla matematica 'pratica' Crelle dà vita nel 1829 a un secondo è in gran parte costituito dalla teoria degli spazivettoriali a n dimensioni, in sostanza, dall'algebra lineare ...
Leggi Tutto
Modelli, Teoria dei
Silvio Bozzi
Malgrado le modeste origini che ne hanno segnato la nascita, la teoria dei modelli ha sviluppato nel corso del tempo idee e metodi che l'hanno resa uno dei settori più [...] T in termini di invarianti (cardinali o altro), così come avviene nel caso dei campi algebricamente chiusi o degli spazivettoriali. Nel corso di questa indagine Shelah introdurrà nozioni e metodi fondamentali quali il concetto di forking, quello di ...
Leggi Tutto
vettoriale
agg. [der. di vettore]. – 1. In matematica e in fisica, inerente a vettori: grandezza v., in contrapp. a scalare (o grandezza scalare), grandezza caratterizzata, oltre che da un valore numerico, anche da una direzione e da un verso,...
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...