Chimica
Generalità
L’a. chimica si occupa dei metodi che permettono di determinare la composizione chimica di un campione. Genericamente ha il significato di scissione in elementi più piccoli e loro esame, [...] L. Fantappiè). L’estensione infinito-dimensionale del calcolo differenziale classico conduce all’introduzione degli spazi astratti (spazi metrici, vettoriali, topologici, normati ecc.). Con essi s’impone un principio concettuale nuovo dell’a., e cioè ...
Leggi Tutto
Tutto ciò che la terra produce o che costituisce il risultato di un’attività umana.
Diritto
La categoria dei p. alimentari, che tende a sostituire quella dei p. agricoli, intesi come frutti naturali, [...] A e b di B rispettivamente.
Per il p. tensoriale (o anche p. tensore) di due o più spazivettoriali ➔ spazio.
P. topologico di spazitopologici
Se X, Y sono due spazitopologici, all’insieme p. cartesiano X×Y si può attribuire in modo spontaneo una ...
Leggi Tutto
spettro In varie discipline scientifiche e tecniche, termine frequentemente usato per indicare la composizione armonica di una grandezza variabile nel tempo.
Botanica
S. biologico Lo s. ottenuto dalle [...] primo tempo, con riferimento agli operatori tra spazivettoriali. Nel caso che gli spazi siano a dimensione finita, la teoria agli inizi del 20° secolo. Una generalizzazione agli spazi lineari-topologici localmente convessi è dovuta a J. Leray (1950 ...
Leggi Tutto
somma In matematica, il risultato dell’ordinaria operazione di addizione o anche l’operazione stessa; in senso estensivo, si parla spesso di s. anche con riferimento a operazioni che soddisfano le proprietà [...] s. di quantità algebriche. S. diretta di spazivettoriali V1, ..., Vk è lo spaziovettoriale V, denotato con il simbolo V1 ⊕ ... lo spazio L2(E) delle funzioni di quadrato sommabile.
Per serie sommabile ➔ serie.
Nella teoria dei gruppi topologici, ...
Leggi Tutto
TOPOLOGIA (v. analysis situs, I, p. 87; topologia astratta, App. II, 11, p. 1004; topologia, App. III, 11, p. 960)
Santuzza Baldassarri Ghezzo
La t. oggi è una delle discipline fondamentali della matematica; [...] in cui le fibre sono spazivettoriali (con la creazione, fra l'altro, seguendo A. Grothendieck, M. F. Atiyah ed F. Hirzebruch, intorno al 1960, della K-teoria), e ha condotto alla costruzione di nuovi invarianti topologici.
Una funzione continua p: E ...
Leggi Tutto
Premessa. - Gli sviluppi dell'a. nel quindicennio 1960-75 sono stati assai notevoli, sia dal punto di vista quantitativo sia da quello qualitativo. Prima di esaminare alcuni progressi in direzioni particolari, [...] per quel che riguarda l'a. commutativa) e della topologia ha ricevuto un enorme impulso. Non è esagerato affermare che G costituiscono la base di un'a., AG, che è uno spaziovettoriale a coefficienti su di un campo K; in essa la moltiplicazione viene ...
Leggi Tutto
VARIETÀ (App. II, 11, p. 1089)
Edoardo Vesentini
In geometria il termine v. è comunemente inteso in due differenti accezioni: v. algebrica (per la quale rinviamo alla voce geometria: Geometria algebrica, [...] classe Cr (con r intero assoluto) è una v. topologica X di dimensione n, sulla quale è assegnata una famiglia 'insieme Ap delle p-forme su X si introduce una struttura di spaziovettoriale reale, assumendo come zero la p-forma nulla in ogni punto di ...
Leggi Tutto
GEOMETRIA ALGEBRICA
Ciro Ciliberto
Igor R. Shafarevich
Lo sviluppo delle idee di Ciro Ciliberto
Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] (K.K) - 12 (pa + 1). In definitiva, la struttura topologica di X è determinata da (K.K), da pa e dalla divisibilità tutte le funzioni razionali f tali che (f) + D ≥ 0 è chiaramente uno spaziovettoriale, denotato con L (D). Se D ≥ 0, dire che f ∈ L ...
Leggi Tutto
Algebra
Irving Kaplansky
sommario: 1. Introduzione. 2. Gruppi in generale. 3. Gruppi semplici finiti. 4. Gruppi infiniti. 5. Gruppi liberi. 6. Gruppi abeliani infiniti. 7. Anelli in generale. 8. Corpi. [...] di A in n immagini arbitrarie; la condizione suddetta è equivalente alla densità topologica in una topologia appropriata. Se A è artiniano, lo spaziovettoriale ha dimensione finita, A consiste di tutte le sue trasformazioni lineari, e riotteniamo ...
Leggi Tutto
Geometria differenziale
SShoshichi Kobayashi
di Shoshichi Kobayashi
Geometria differenziale
sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] di M. Si tratta di un esempio di fibrato vettoriale. Il concetto di spazio fibrato si è rivelato molto proficuo sia in geometria differenziale e in geometria algebrica sia in topologia.
Una metrica riemanniana su M definisce un prodotto interno ...
Leggi Tutto
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
campo
s. m. [lat. campus «campagna, pianura» poi «campo di esercitazioni, campo di battaglia»]. – Termine che ha assunto (per evoluzione dai sign. principali che già aveva nella lingua d’origine) notevole varietà di accezioni e di usi, rimanendo...