• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
lingua italiana
11 risultati
Tutti i risultati [48]
Geometria [11]
Matematica [24]
Algebra [6]
Fisica [5]
Biografie [5]
Storia della matematica [5]
Storia della fisica [4]
Fisica matematica [4]
Meccanica [3]
Meccanica dei fluidi [3]

geometria

Enciclopedia on line

In senso ampio e generico, ramo della matematica che studia lo spazio e le figure spaziali. Cenni storiciL’antichità - L’origine della g. è legata a concreti problemi di misurazione del terreno (nacque [...] funzionale, che si occupa anche dell’intimo significato di tali numeri. G. proiettiva È l’insieme delle proprietà delle figure degli spazi proiettivi, che sono invarianti rispetto alle proiettività, cioè alle trasformazioni direttamente legate alle ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: OPERAZIONI DI PROIEZIONE E SEZIONE – TEORIA QUANTISTICA DEI CAMPI – TEORIA DELLE SUPERSTRINGHE – POSTULATO DELLE PARALLELE – METODO DELL’ASSONOMETRIA
Mostra altri risultati Nascondi altri risultati su geometria (13)
Mostra Tutti

omografia

Enciclopedia on line

In geometria, corrispondenza biunivoca senza eccezioni tra gli elementi (di solito i punti) che costituiscono due spazi proiettivi Pn e P′n aventi la stessa dimensione, la quale faccia corrispondere a [...] sono distinti, scegliendo opportunamente il riferimento proiettivo di uno dei due spazi, l’o. si può rappresentare nella forma ρx′i=xi (i=0, 1, …, n): gli spazi proiettivi a n dimensioni sono proiettivamente identici e pertanto non si pone nessun ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: CORRISPONDENZA BIUNIVOCA – COORDINATE OMOGENEE – SPAZIO VETTORIALE – OPERATORI LINEARI – MATRICE QUADRATA
Mostra altri risultati Nascondi altri risultati su omografia (1)
Mostra Tutti

Geometria algebrica

Enciclopedia del Novecento II Supplemento (1998)

GEOMETRIA ALGEBRICA Ciro Ciliberto Igor R. Shafarevich Lo sviluppo delle idee di Ciro Ciliberto Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] fuori di C, si ha σ (Z) = C con Z di codimensione 1 in X′ e per ogni c ∈ C la fibra σ-1 (c) è uno spazio proiettivo di dimensione m - 1. Per esempio, se X è una superficie e c ∈ X un punto, allora σ contrae una retta a c. In coordinate affini l ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – ACCADEMIA NAZIONALE DELLE SCIENZE DETTA DEI XL – EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – SCUOLA ITALIANA DI GEOMETRIA ALGEBRICA – CARATTERISTICA DI EULERO-POINCARÉ
Mostra altri risultati Nascondi altri risultati su Geometria algebrica (2)
Mostra Tutti

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten

Storia della Scienza (2003)

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten Enrico Arbarello Geometria numerativa e invarianti di Gromov-Witten Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] di queste rette in comune). Il teorema può generalizzarsi in dimensione superiore: siano date r ipersuperfici algebriche V1,…,Vr nello spazio proiettivo r-dimensionale ℙr. Sia ni il grado di Vi (e cioè il grado del polinomio omogeneo in r+1 variabili ... Leggi Tutto
CATEGORIA: GEOMETRIA

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] , la misura degli angoli, le funzioni trigonometriche, le somme e i prodotti infiniti di numeri complessi e gli spazi proiettivi complessi. Il nono capitolo mostra l'utilizzazione dei numeri reali in topologia generale. Dato un insieme X si chiama ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] di un'altra a seconda del gruppo di trasformazioni di Klein scelto. Una connessione proiettiva, per esempio, viene descritta da Cartan in termini di spazi proiettivi associati a ogni punto: un confronto tra punti vicini dà luogo a una trasformazione ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. La scuola di geometria algebrica italiana

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La scuola di geometria algebrica italiana Alberto Conte Ciro Ciliberto La scuola di geometria algebrica italiana Gli inizi: Luigi Cremona e [...] credette di poter stabilire un risultato anche più completo: egli affermò infatti che la famiglia delle curve di genere g e grado n in uno spazio proiettivo di dimensione r è irriducibile se ϱ(g,r,n)≥0 e ha la 'giusta dimensione' pari a 3g−3+ϱ(g,r,n ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Geometria superiore

Storia della Scienza (2003)

L'Ottocento: matematica. Geometria superiore David E. Rowe Geometria superiore Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] euclidea a più dimensioni. Verso la metà degli anni Ottanta, Segre trovò molti risultati importanti validi per questi spazi proiettivi a più dimensioni e utilizzò la teoria dei divisori elementari per dare una classificazione delle quadriche in un ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – OTTICA – STORIA DELLA FISICA – GEOMETRIA – STORIA DELLA MATEMATICA

spazio proiettivo

Enciclopedia della Scienza e della Tecnica (2008)

spazio proiettivo Luca Tomassini Dati due insiemi P,Q e una relazione R⊂P×Q, consideriamo la tripla C={P,Q,R} e chiamiamo ogni elemento di P un punto e ogni elemento di Q una linea. Se (p,l)∈R è valida [...] P0≠∅, dove ∅ indica l’insieme vuoto e le inclusioni sono strette. Il numero n della più breve di tali successioni è detto dimensione dello spazio proiettivo P. Un sottospazio di dimensione 1 è una linea, un sottospazio di dimensione 2 è detto piano ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: ASSIOMA
Mostra altri risultati Nascondi altri risultati su spazio proiettivo (1)
Mostra Tutti

La grande scienza. Geometria non commutativa

Storia della Scienza (2003)

La grande scienza. Geometria non commutativa Alain Connes Geometria non commutativa Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] La [16] è soddisfatta ed è interessante il fatto che come modulo destro su ℬ lo spazio S(ℝ) sia 'finitamente generato' e proiettivo (addendo diretto di un modulo libero). Pertanto esso possiede le proprietà algebriche necessarie per essere chiamato ... Leggi Tutto
CATEGORIA: GEOMETRIA
1 2
Vocabolario
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
proiettare
proiettare v. tr. [dal lat. tardo proiectare, der. di proiectus, part. pass. di proicĕre «gettare avanti», comp. di pro-1 e iacĕre «gettare»; cfr. progettare] (io proiètto, ecc.). – 1. Gettare, lanciare, spingere fuori o avanti con forza;...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali