La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] nel dominio dei reali e in quello dei complessi, gli integrali euleriani e la formula di Stirling.
Spazivettorialitopologici
I primi due fascicoli sugli Espaces vectoriels topologiques (EVT) hanno fatto sì che si sovrapponessero le formulazioni ...
Leggi Tutto
somma In matematica, il risultato dell’ordinaria operazione di addizione o anche l’operazione stessa; in senso estensivo, si parla spesso di s. anche con riferimento a operazioni che soddisfano le proprietà [...] s. di quantità algebriche. S. diretta di spazivettoriali V1, ..., Vk è lo spaziovettoriale V, denotato con il simbolo V1 ⊕ ... lo spazio L2(E) delle funzioni di quadrato sommabile.
Per serie sommabile ➔ serie.
Nella teoria dei gruppi topologici, ...
Leggi Tutto
GEOMETRIA ALGEBRICA
Ciro Ciliberto
Igor R. Shafarevich
Lo sviluppo delle idee di Ciro Ciliberto
Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] (K.K) - 12 (pa + 1). In definitiva, la struttura topologica di X è determinata da (K.K), da pa e dalla divisibilità tutte le funzioni razionali f tali che (f) + D ≥ 0 è chiaramente uno spaziovettoriale, denotato con L (D). Se D ≥ 0, dire che f ∈ L ...
Leggi Tutto
Geometria differenziale
SShoshichi Kobayashi
di Shoshichi Kobayashi
Geometria differenziale
sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] di M. Si tratta di un esempio di fibrato vettoriale. Il concetto di spazio fibrato si è rivelato molto proficuo sia in geometria differenziale e in geometria algebrica sia in topologia.
Una metrica riemanniana su M definisce un prodotto interno ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica
Jeremy Gray
Geometria algebrica
Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] Weber non riuscirono a trovare il modo di introdurre una topologia nell'insieme di tutte le valutazioni associate a un forma la somma diretta di due spazivettoriali, si può formare la somma diretta E1⊕E2 di due fibrati vettoriali su X, che ha come ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale
Jeremy Gray
Geometria differenziale
La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] una connessione stabilisce una relazione lineare tra spazivettoriali (non necessariamente spazi tangenti) associati a una varietà in due il primo a sistemare la materia fu il topologo americano Steenrod nel libro The topology of fibre bundles ...
Leggi Tutto
In matematica, concetto introdotto nel 1935 da H. Whitney in relazione a problemi di topologia e geometria delle varietà. Ha dato luogo a una teoria che ha avuto un enorme sviluppo, specialmente in connessione [...] agli spazivettoriali (A. Grothendieck, M.F. Atiyah, F. Hirzebruch) e ha condotto alla costruzione di nuovi invarianti topologici. Una funzione continua p: E→B è un f. con spazio totale E, spazio di base B e spazio fibra F se esiste un ricoprimento ...
Leggi Tutto
spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] orto-normale ecc.
Uno s. vettoriale dotato di una topologia di Hausdorff è uno s. vettorialetopologico detto convesso se in ogni punto esiste una base di intorni convessi.
Per s. di Minkowski (o spazio-tempo) ➔ cronotopo.
Medicina
Medicina spaziale ...
Leggi Tutto
Sistemi dinamici
Franco Magri
Dmitrij Anosov
Il concetto di sistema è presente nel dibattito scientifico degli ultimi decenni nelle più diverse discipline: dall'idea di sistema fisico a quella di ecosistema, [...] di livello siano compatte, che tali superfici hanno la topologia di tori n-dimensionali; infine si verifica che la è quadrimensionale come spaziovettoriale su R). La velocità di fase del flusso di Hopf è un campo vettoriale che fa corrispondere ...
Leggi Tutto
Variazioni, calcolo delle
Gianni Dal Maso
Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze dipendenti da variabili di tipo numerico [...] è un minimo locale.
Il caso vettoriale
Se la funzione u(x) prende i suoi valori nello spazio euclideo m-dimensionale ℝm, possiamo delle quali è legato a interessanti questioni di topologia e di geometria differenziale.
Superfici cartesiane di area ...
Leggi Tutto
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
campo
s. m. [lat. campus «campagna, pianura» poi «campo di esercitazioni, campo di battaglia»]. – Termine che ha assunto (per evoluzione dai sign. principali che già aveva nella lingua d’origine) notevole varietà di accezioni e di usi, rimanendo...