• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
vocabolario
24 risultati
Tutti i risultati [117]
Analisi matematica [24]
Matematica [56]
Algebra [25]
Fisica [20]
Geometria [14]
Fisica matematica [14]
Temi generali [12]
Meccanica quantistica [11]
Meccanica [8]
Statistica e calcolo delle probabilita [8]

operatori compatti

Enciclopedia della Scienza e della Tecnica (2008)

operatori compatti Luca Tomassini Operatori lineari su uno spazio di Hilbert ℋ vicini in un senso opportuno agli operatori di dimensione finita, ovvero agli operatori che mandano ℋ in un sottospazio [...] P0Pi=0 per ogni i) tali che Il proiettore P0 proietta sul sottospazio KerA={x∈ℋ tali che Ax=0}, il quale può essere di dimensione infinita; i proiettori Pi al contrario proiettano su sottospazi di dimensione finita. Come stabilisce il teorema di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: OPERATORE COMPATTO – OPERATORE IDENTITÀ – ANALISI MATEMATICA – SPAZIO DI HILBERT – OPERATORE LINEARE

Analisi matematica

Enciclopedia della Scienza e della Tecnica (2007)

Analisi matematica Jean A. Dieudonné Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] k=k(λ) tale che la restrizione di (U−λI)k a N(λ) è 0. L'immagine F(λ) mediante (U−λI)k di E è allora un sottospazio chiuso di E, complementare di N(λ), e la restrizione di U−λI a F(λ) è una bigezione di tale spazio con se stesso. Per tutti i μ≠λ ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – TEOREMA DI APPROSSIMAZIONE DI WEIERSTRASS – EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONE INTEGRALE DI VOLTERRA – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Analisi matematica (4)
Mostra Tutti

rappresentazione irriducibile

Enciclopedia della Scienza e della Tecnica (2008)

rappresentazione irriducibile Gilberto Bini Rappresentazione lineare di un gruppo G, vale a dire un omomorfismo ϱ di G nel gruppo degli endomorfismi invertibili di uno spazio vettoriale V. Tale omomorfismo [...] induce un’azione di G sugli elementi di V data da g∙v=ϱ(g)v. Una sottorappresentazione di G è un sottospazio di V che viene mandato in sé nell’azione di G. Una rappresentazione di G si dice irriducibile se non esiste alcuna sottorapresentazione di G ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

operatore di proiezione

Enciclopedia della Scienza e della Tecnica (2008)

operatore di proiezione Luca Tomassini Sia ℋ uno spazio vettoriale e P un’applicazione lineare (operatore) di ℋ in sé. Se P=P2 allora P è detto operatore di proiezione. Di particolare importanza è il [...] definito da XP={x∈ℋ tali che Px=x} dove P è un proiettore ortogonale. Non è difficile verificare (P è lineare) che XP è un sottospazio lineare chiuso nella norma indotta dal prodotto scalare. Si ha inoltre (I−P)2=I−2P+P2=I−P, così che anche I−P è un ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: COMPLEMENTO ORTOGONALE – APPLICAZIONE LINEARE – OPERATORI HERMITIANI – SOTTOSPAZIO LINEARE – FUNZIONI MISURABILI
Mostra altri risultati Nascondi altri risultati su operatore di proiezione (5)
Mostra Tutti

Uryson Pavel Samuilovic

Dizionario delle Scienze Fisiche (1996)

Uryson Pavel Samuilovic Uryson (o Urysohn) 〈urïsòn〉 Pavel Samuilovič [STF] (Odessa 1898 - Batz, Loira, 1924) Libero docente di matematica nell'univ. di Mosca (1921). ◆ [ALG] Lemma di U.: afferma che [...] che f(x)=0 se x∈A, f(x)=1 se x∈B, 0≤f(x)≤1 se x∉A⋃B. ◆ [ANM] Teorema di U.: ogni spazio topologico normale, provvisto di una base numerabile di aperti, è omeomorfo a un sottospazio di uno spazio di Hilbert (e pertanto, in partic., è metrizzabile). ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su Uryson Pavel Samuilovic (2)
Mostra Tutti

ortonormale

Enciclopedia on line

In matematica si dice di un sistema di vettori che siano a due a due ortogonali e inoltre di lunghezza unitaria, o anche di un sistema di funzioni f1(x), … fn(x), …, in numero finito o infinito, tali che, [...] o.: siano v1, v2, …, vn, n vettori costituenti una base dello spazio vettoriale V; si ponga e1 = v1/| v1| e si scelga e2 nel sottospazio generato da v1, v2, in modo che sia perpendicolare a e1 e di lunghezza unitaria; successivamente si prenda e3 nel ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: POLINOMI DI LEGENDRE – SPAZIO VETTORIALE – FUNZIONI CONTINUE – ASSE REALE – MATEMATICA
Mostra altri risultati Nascondi altri risultati su ortonormale (1)
Mostra Tutti

somma diretta

Enciclopedia della Scienza e della Tecnica (2008)

somma diretta Luca Tomassini Sia {Aα,α∈I} una famiglia di insiemi indicizzata dall’insieme I e sia πΑ∈I Aα il prodotto diretto (o cartesiano) dei suoi elementi Aα. Un elemento di πΑ∈I Aα è allora un’applicazione [...] degli insiemi Aα (talvolta indicata con il simbolo ⊕α∈I Aα) è allora definita come quel sottoinsieme (di fatto un sottospazio) del prodotto cartesiano πΑ∈I Aα consistente di quelle applicazioni (elementi) x:I→πΑ∈I Aα che hanno supporto finito, ovvero ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: SPAZIO VETTORIALE – ELEMENTO NEUTRO – ALGEBRA
Mostra altri risultati Nascondi altri risultati su somma diretta (1)
Mostra Tutti

autovalore

Enciclopedia della Scienza e della Tecnica (2008)

autovalore Luca Tomassini Tanto in algebra quanto in analisi, si è frequentemente condotti a definire e a calcolare delle funzioni (inverso, potenze, esponenziali ecc.) di un endomorfismo A:V→V di uno [...] dei vettori tali che Ax=0). Talvolta più autovettori (linearmente indipendenti) corrispondono al medesimo autovalore λ e il sottospazio da essi generato è detto allora autospazio associato a λ. L’insieme degli autovalori di A si chiama spettro ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: ANALISI FUNZIONALE – SPAZIO VETTORIALE – RAGGIO SPETTRALE – DIAGONALIZZABILE – PIANO COMPLESSO
Mostra altri risultati Nascondi altri risultati su autovalore (4)
Mostra Tutti

operatori lineari

Enciclopedia della Scienza e della Tecnica (2008)

operatori lineari Luca Tomassini Un’appli­cazione A:E→F di uno spazio lineare E in uno spazio lineare F (anche coincidente con E) su un campo K (che qui identificheremo con i numeri complessi ℂ) tale [...] di x0 tale che Ax∈ V per x∈ U. L’operatore è detto continuo se è continuo in ogni x∈E. In questo caso KerA è un sottospazio chiuso di E. Dalla proprietà di linearità segue che A è continuo se e solo se è continuo in un singolo punto x0. Se E e F sono ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: OPERATORI LINEARI CONTINUI – SPAZIO VETTORIALE – ALGEBRA DI BANACH – FUNZIONE CONTINUA – NUMERI COMPLESSI
Mostra altri risultati Nascondi altri risultati su operatori lineari (2)
Mostra Tutti

spazio metrico

Enciclopedia della Scienza e della Tecnica (2008)

spazio metrico Luca Tomassini Nozione introdotta nel 1906 da Maurice Fréchet e sviluppata poco dopo da Felix Hausdorff; è un risultato diretto dell’analisi delle principali proprietà astratte della [...] le loro proprietà metriche saranno allora identiche. Se (I,d) è uno spazio metrico, allora ogni sottoinsieme S di I è uno spazio metrico, detto sottospazio di I, per la distanza d′ indotta da d attraverso la formula d′(x,y)=d(x,y) per x,y in S. Ogni ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: DISUGUAGLIANZA TRIANGOLARE – SUCCESSIONI CONVERGENTI – SUCCESSIONE DI CAUCHY – ANALISI MATEMATICA – TEORIA DEI NUMERI
Mostra altri risultati Nascondi altri risultati su spazio metrico (1)
Mostra Tutti
1 2 3
Vocabolario
sottospàzio
sottospazio sottospàzio s. m. [comp. di sotto- e spazio]. – In matematica, è così detto un sottoinsieme di uno spazio che mantenga la struttura e le proprietà dello spazio dato; con sign. più specifici, si parla di s. vettoriale, lineare,...
suppleménto
supplemento suppleménto (ant. o raro suppliménto) s. m. [dal lat. supplementum, der. di supplere: v. supplire]. – 1. Ciò che serve a supplire, a sostituire una cosa mancante: quel rimbombo ... delle varie campane ... pareva, per dir così,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali