• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
vocabolario
117 risultati
Tutti i risultati [117]
Matematica [56]
Algebra [25]
Analisi matematica [24]
Fisica [20]
Geometria [14]
Fisica matematica [14]
Temi generali [12]
Meccanica quantistica [11]
Meccanica [8]
Statistica e calcolo delle probabilita [8]

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] di spazio vettoriale topologico su un campo valutato. La completezza conduce agli spazi di Banach. Si studiano i sottospazi, le parti equilibrate, le parti assorbenti. Intervengono poi le varietà lineari, gli iperpiani chiusi e gli spazi vettoriali ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali Haïm Brezis Felix Browder Equazioni differenziali alle derivate parziali Lo studio delle equazioni [...] contorno. Si tratta di una variante del processo iniziato un decennio prima nel caso degli spazi L2. Lo spazio H è un sottospazio lineare di L2 dotato di una norma diversa. Per definizione, per ogni elemento u di H esiste una successione di funzioni ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] esame ora una formulazione abbastanza generale del principio di uniforme limitatezza. Supponiamo che lo spazio X sia completo e sia S un sottospazio del duale coniugato X′. Se per ogni x in X esiste una costante C (dipendente da x) tale che ∣x′(x)∣≤C ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Analisi non lineare: metodi variazionali

Enciclopedia della Scienza e della Tecnica (2007)

Analisi non lineare: metodi variazionali Antonio Ambrosetti I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] è chiamata funzione di Morse. Se p è un punto critico non degenere, il suo indice di Morse è, per definizione, la dimensione del sottospazio di ℝn dove la matrice D2fM(p) è definita negativa. Se k è l'indice di p si può provare che in un intorno di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE ALLE DERIVATE PARZIALI – PROBLEMA DELLA BRACHISTOCRONA – CALCOLO DELLE VARIAZIONI – EQUAZIONE DI SCHRÖDINGER – PROIEZIONE STEREOGRAFICA

Fisica

Enciclopedia del Novecento (1977)

Fisica BBruno Ferretti di Bruno Ferretti Fisica sommario: 1. Introduzione. a) Obiettività secondo Poincaré. b) Storia naturale e fisica. c)  Il metodo sperimentale e il metodo teorico. d) Storicità [...] approssimazione? Ogni sottoinsieme dei gradi di libertà di Ac comprendente fi gradi di libertà deve essere descritto, nel sottospazio delle fasi relativo, con una incertezza molto maggiore di hfi; questa è veramente una condizione necessaria. Se gli ... Leggi Tutto
CATEGORIA: MECCANICA QUANTISTICA – STORIA DELLA FISICA
TAGS: PRINCIPIO DI INDETERMINAZIONE' DI HEISENBERG – PRINCIPIO DI COMPLEMENTARITÀ – RADIAZIONE ELETTROMAGNETICA – MOMENTO ANGOLARE INTRINSECO – COSTANTE DI STRUTTURA FINE
Mostra altri risultati Nascondi altri risultati su Fisica (13)
Mostra Tutti

Teorie unificate

Enciclopedia del Novecento (1984)

Teorie unificate MMirza A. B. Bég di Mirza A. B. Bég SOMMARIO: 1. Introduzione. □ 2. La sintesi elettrodebole: dinamica quantistica dei sapori: a) osservazioni preliminari; b) le interazioni deboli [...] sono i quadrati delle matrici di massa dei mesoni vettoriali e degli scalari di Higgs, P è un operatore di proiezione sul sottospazio a N − M dimensioni sotteso dai bosoni di Goldstone e ξ è un parametro che specifica la particolare gauge scelta. Le ... Leggi Tutto
TAGS: ELETTRODINAMICA QUANTISTICA – GRUPPO DI RINORMALIZZAZIONE – COSTANTE DI STRUTTURA FINE – TEORIA DELLE PERTURBAZIONI – CROMODINAMICA QUANTISTICA

Relativita

Enciclopedia del Novecento (1982)

RELATIVITÀ Christian Moller Tullio Regge Eugenio Garin Relatività di Christian Møller sommario: 1. Introduzione e panorama storico: a) il principio di relatività speciale. Sistemi inerziali; b) relatività [...] , poiché la combinazione lineare a coefficienti costanti di due vettori è ancora un vettore di Killing. Questo spazio è isomorfo a un sottospazio lineare di quello dei dati iniziali ξμ, ξμ;ν, e quindi ha al più dimensione N(N+1)/2 per una varietà ... Leggi Tutto
CATEGORIA: RELATIVITA E GRAVITAZIONE – DOTTRINE TEORIE E CONCETTI – METAFISICA
TAGS: LOGICA DELLA SCOPERTA SCIENTIFICA – PRINCIPIO DI ESCLUSIONE DI PAULI – SISTEMA DI COORDINATE CARTESIANE – MOMENTO ANGOLARE INTRINSECO – SPOSTAMENTO VERSO IL ROSSO
Mostra altri risultati Nascondi altri risultati su Relativita (8)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 12
Vocabolario
sottospàzio
sottospazio sottospàzio s. m. [comp. di sotto- e spazio]. – In matematica, è così detto un sottoinsieme di uno spazio che mantenga la struttura e le proprietà dello spazio dato; con sign. più specifici, si parla di s. vettoriale, lineare,...
suppleménto
supplemento suppleménto (ant. o raro suppliménto) s. m. [dal lat. supplementum, der. di supplere: v. supplire]. – 1. Ciò che serve a supplire, a sostituire una cosa mancante: quel rimbombo ... delle varie campane ... pareva, per dir così,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali