• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
vocabolario
53 risultati
Tutti i risultati [143]
Matematica [53]
Analisi matematica [16]
Geometria [16]
Fisica [14]
Informatica [13]
Algebra [11]
Temi generali [11]
Storia della matematica [10]
Biologia [9]
Medicina [9]

Logica matematica

Enciclopedia del Novecento (1978)

Logica matematica Abraham Robinson *La voce enciclopedica Logica matematica è stata ripubblicata da Treccani Libri, arricchita e aggiornata da un’introduzione di Gabriele Lolli e un saggio di Beppo [...] . Sia A un insieme di oggetti, chiamati ‛punti', e sia Ω un insieme di sottoinsiemi di A chiamati ‛insiemi aperti'. (Intuitivamente, un sottoinsieme U del dato insieme A è aperto se, per ogni punto p di U, ogni punto q di A sufficientemente vicino a ... Leggi Tutto
CATEGORIA: LOGICA MATEMATICA
TAGS: TEOREMA DI INCOMPLETEZZA DI GÖDEL – SCOMPOSIZIONE IN FATTORI PRIMI – TEOREMA DEL BUON ORDINAMENTO – FUNZIONE RICORSIVA PRIMITIVA – INSIEME DEI NUMERI NATURALI
Mostra altri risultati Nascondi altri risultati su Logica matematica (9)
Mostra Tutti

La grande scienza. Geometria non commutativa

Storia della Scienza (2003)

La grande scienza. Geometria non commutativa Alain Connes Geometria non commutativa Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] (x,0) e (x,1), per ogni x nell'intervallo aperto ]0,1[. Ma, per continuità, funzioni che coincidono all'interno spazio è sostituita da quella di spettro dimensionale, cioè dal sottoinsieme {z∈ℂ, Re(z)≥0} delle singolarità delle funzioni analitiche: ... Leggi Tutto
CATEGORIA: GEOMETRIA

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica Umberto Bottazzini Filosofia e pratica matematica Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] l'esistenza di una funzione ('di scelta') che associa, a ogni sottoinsieme (non vuoto) S di M, un elemento di S stesso. dell'aritmetica del primo ordine è non contraddittoria. Un aperto confronto tra le diverse 'scuole' (formalista, intuizionista e ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

Intuizionismo

Enciclopedia del Novecento (1978)

Intuizionismo AArend Heyting di Arend Heyting Intuizionismo sommario: 1. Concetti fondamentali.  2. Aritmetica elementare.  3. Il principio del terzo escluso. 4. I numeri reali. 5. Ineguaglianza e separazione [...] D infinita' se si conosce una corrispondenza biunivoca fra S e un sottoinsieme proprio di S. L'usuale forma del teorema di Bolzano-Weierstrass non . Topologia In topologia la nozione di insieme aperto, definita nel solito modo, è meno importante ... Leggi Tutto
TAGS: TEOREMA DI BOLZANO-WEIERSTRASS – PRINCIPIO DEL TERZO ESCLUSO – QUANTIFICATORE UNIVERSALE – LIMITE DI UNA SUCCESSIONE – CORRISPONDENZA BIUNIVOCA
Mostra altri risultati Nascondi altri risultati su Intuizionismo (3)
Mostra Tutti

L'Universo matematico

Frontiere della Vita (1998)

L'Universo matematico John D. Barrow (Astronomy Centre, University of Sussex, Brighton, Gran Bretagna) Parte di questo saggio è stata pubblicata sotto il titolo Perché il mondo è matematico? Roma-Bari, [...] che il dibattito deve essere considerato aperto. Tornando al rompicapo dell'applicabilità della realmente voteranno. In pratica lo si chiede a un sottoinsieme rappresentativo della popolazione e ciò usualmente produce una previsione incredibilmente ... Leggi Tutto
CATEGORIA: COSMOLOGIA – TEMI GENERALI

Geometria non commutativa

Enciclopedia della Scienza e della Tecnica (2007)

Geometria non commutativa Alain Connes Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo allora la teoria generale della relatività dà chiaramente ragione a Carl [...] x,0) e (x,1) per ogni x nell'intervallo aperto (0,1). Ma per continuità funzioni che coincidono all'interno uno spazio è sostituita da quella di spettro dimensionale, cioè dal sottoinsieme, {z∈ℂ, Re(z)≥0} delle singolarità delle funzioni analitiche [ ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – APPROSSIMAZIONE SEMICLASSICA – ELETTRODINAMICA QUANTISTICA – GRUPPO DI RINORMALIZZAZIONE
Mostra altri risultati Nascondi altri risultati su Geometria non commutativa (13)
Mostra Tutti

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] diremo anche che gli elementi x ∈ M, y ∈ N sono ortogonali. Un ‛sistema ortogonale' è un sottoinsieme Q, per il quale si ha che per x ∈ Q, y ∈ Q e x ≠ y, A)) {0}. Quindi ρ (A) è aperto. Queste riflessioni sono particolarmente interessanti quando R(μ, ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] la derivata di una funzione vettoriale definita su un sottoinsieme di ℝ. Le definizioni sono espresse nel linguaggio dei + rispetto alla misura positiva μ è definito da Se G è un aperto di E e φG è la funzione caratteristica associata, si pone μ*(G ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali Haïm Brezis Felix Browder Equazioni differenziali alle derivate parziali Lo studio delle equazioni [...] ricavate con tale procedimento appartengono a un sottoinsieme compatto di un opportuno spazio di funzioni. soluzioni dell'equazione: [6] (I-C)u=p, u∈G dove G è un aperto limitato in uno spazio di Banach X. Il grado è definito soltanto se non vi sono ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] insieme compatto venne riformulata in termini di ricoprimenti aperti. Il risultato, per gli spazi metrici, è che un insieme S in uno spazio metrico può essere chiamato compatto se e solo se, ogni sottoinsieme infinito di S ammette un punto limite in ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA
1 2 3 4 5 6
Vocabolario
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
popolazióne
popolazione popolazióne (ant. populazióne) s. f. [dal lat. tardo populatio -onis, der. di popŭlus «popolo1»]. – 1. a. L’insieme delle persone viventi in un dato territorio, considerate nel loro complesso e nell’estensione numerica: la p. della...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali