Nel linguaggio scientifico, si dice di ente o grandezza, e anche di espressione matematica o di espressione indicante un legame tra certe grandezze, che non muti operando particolari cambiamenti di variabili [...] è un elemento di I, qualunque sia x in X; nel caso di un anello, si parlerà di un ideale, destro o sinistro. Un sottogruppo H di un gruppo G si dirà invece i. (o normale) quando è mutato in sé da una particolare classe di trasformazioni: quella degli ...
Leggi Tutto
In geometria elementare si dice di due enti che formano tra loro un angolo retto.
Due rette r, s del piano si dicono o. (o perpendicolari) se si intersecano formando quattro angoli retti (fig. 1 A); una [...] −1)/2 parametri: per n≥3 non è abeliano. Da un punto di vista geometrico On rappresenta le rotazioni dello spazio euclideo n-dimensionale En attorno a un punto di En. Si indica poi con O+n il sottogruppo di On costituito dalle sole rotazioni dirette. ...
Leggi Tutto
Biologia
Mutamento della posizione di un organismo o di una sua parte rispetto all’ambiente. La capacità di muoversi è una delle caratteristiche fondamentali degli esseri viventi, di solito la manifestazione [...] è un gruppo misto, non abeliano, composto di 2 schiere, quella dei m. diretti, che formano un sottogruppo, e quella dei m. inversi. Importanti sottogruppi del gruppo dei m. sono il gruppo delle traslazioni e il gruppo delle rotazioni (con centro in ...
Leggi Tutto
Biologia
Elemento genetico
trasponibile Unità genetica in grado di inserirsi in un cromosoma, uscirne e reinserirsi successivamente in una diversa posizione. Con tale locuzione sono altresì indicate le [...] gli elementi con proprietà chimiche simili. Così, il primo gruppo, che comprendeva i metalli non-covalenti, era suddiviso nei sottogruppi IA, formato dai metalli alcalini, e IB, formato dai metalli nobili rame, argento e oro. Con l’introduzione del ...
Leggi Tutto
La grande scienza. Geometria numerativa e invarianti di Gromov-Witten
Enrico Arbarello
Geometria numerativa e invarianti di Gromov-Witten
Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] Una forma differenziale ω si definisce 'chiusa' se dω=0 e 'esatta' se ω=dφ. Si denota con Hk(V)⊂H*(V) il sottogruppo delle classi di equivalenza delle forme differenziali chiuse di grado k. Si ha una decomposizione:
[14] H*(V)=⊕kHk(V).
La struttura ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] reali e si spiegano gli sviluppi di numeri reali relativi a una base.
Il quinto capitolo presenta lo studio dei sottogruppi, dei gruppi quozienti di ℝ, del toro T, e quello delle funzioni esponenziali e logaritmiche.
Il sesto capitolo studia più in ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo
John McCleary
La topologia algebrica all'inizio del XX secolo
Le radici della topologia algebrica [...] generalizzazione di applicazioni continue, deducendone le relazioni tra i gruppi πn(G), πn(G/H) e πn(H), dove H è un sottogruppo connesso di un gruppo G di Lie.
Con queste relazioni egli poneva il calcolo di Hopf di π3(S2) nel contesto dei gruppi ...
Leggi Tutto
sottogruppo
s. m. [comp. di sotto- e gruppo]. – Ciascuno dei gruppi minori in cui un gruppo è o può essere suddiviso: gruppi e s. sociali, economici, chimici. In matematica, sottoinsieme G di un gruppo G′, che, con la stessa operazione di...
sotto-
– È la prep. (e avv.) sotto, usata come prefisso per la formazione di molti composti nominali e verbali, in alcuni dei quali conserva il sign. e anche la funzione di preposizione (come negli avv. sottaceto, sottochiave, sottocosto,...