Biologia
G. sanguigni
Strutture antigeniche presenti sulla superficie dei globuli rossi e riconosciute da anticorpi specifici (➔ gruppi sanguigni).
G. tissutali
Insieme di individui istocompatibili, tra [...] di G, e si scrive H◁G.
Si chiama g. fattoriale o g. fattore o g. complementare di un g. G rispetto a un suo sottogruppo invariante H il g. che ha per elementi i sistemi laterali di G rispetto a H, cioè gli insiemi α=aH, l’operazione di prodotto ...
Leggi Tutto
GEOMETRIA ALGEBRICA
Ciro Ciliberto
Igor R. Shafarevich
Lo sviluppo delle idee di Ciro Ciliberto
Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] . Harer e D. Zagier). In questo caso e (Mg) è definito come nella teoria degli orbifold: se Mg = Tg / Γ e G è un sottogruppo di indice finito in Γ che agisce liberamente su Tg, allora e (Mg =
dove e (Tg / Γ) è la solita caratteristica di Eulero. In ...
Leggi Tutto
Geometria differenziale
SShoshichi Kobayashi
di Shoshichi Kobayashi
Geometria differenziale
sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] (e identificandolo con l'elemento identità del gruppo). L'unione O(M)=⋃p∈MO(M)p è un sottofibrato di L(M) corrispondente al sottogruppo O(n)⊂GL(n;R). Così ogni metrica riemanniana ds2 su M dà origine a un sottofibrato O(M) di L(M) e questo ...
Leggi Tutto
Geometria non commutativa
Irving E. Segal
Sommario: 1. Introduzione. 2. La meccanica quantistica e l'algebra degli operatori. 3. Le forme differenziali quantistiche. 4. Le C*-algebre e la loro teoria [...] 'onda reale, che fornisce una rappresentazione (complessa!) unitaria e irriducibile del gruppo conforme e del suo sottogruppo di Poincaré. È opportuno chiarire ed esemplificare la quantizzazione astratta appena descritta attraverso casi concreti come ...
Leggi Tutto
La grande scienza. Geometria non commutativa
Alain Connes
Geometria non commutativa
Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] , i lavori recenti di Vincent Lafforgue hanno permesso di superare la barriera della proprietà T, dimostrando che l'isomorfismo sussiste per sottogruppi compatti di rango 1 dei gruppi di Lie, e anche di SL(3,ℝ) e di gruppi di Lie p-adici. Lafforgue ...
Leggi Tutto
Invarianti, Teoria degli
Claudio Procesi
La geometria proiettiva, e le geometrie non euclidee, ebbero un grande impatto sul pensiero algebrico e geometrico del secolo scorso. Le idee scaturite da questa [...] O(n,ℂ)≡{X∈Mn,n(ℂ) tali che XXt=1} dove Xt indica la trasposta di X. Il gruppo speciale ortogonale è il sottogruppo formato dalle matrici con determinante uguale a 1. Il gruppo simplettico si definisce in modo analogo: Sp(n,ℂ)≡{X∈Mn,n(ℂ) tali ...
Leggi Tutto
Matematica
Lo studio delle proprietà geometriche delle figure che non dipendono dalla nozione di misura, ma sono legate a problemi di deformazione delle figure stesse.
Proprietà topologiche
La t., che [...] delle classi di equivalenza. Pertanto, la successione [2] è esatta a Sn, se e solo se Hn(S)=0. Il nucleo di un omomorfismo f:A→B è il sottogruppo di A definito da ker(f)={a∈A | f(a)=0}, e la sua immagine è {f(a) | a∈A}. Dati gli omomorfismi f:A→B e g ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale
Jeremy Gray
Geometria differenziale
La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] un intorno infinitesimo di un punto è simile allo spazio ma che globalmente ha proprietà che riflettono quelle del gruppo. Cartan sceglie un sottogruppo H di G e nello stesso modo forma un secondo spazio G/H, usando G come spazio di partenza e H come ...
Leggi Tutto
Sistemi dinamici
Franco Magri
Dmitrij Anosov
Il concetto di sistema è presente nel dibattito scientifico degli ultimi decenni nelle più diverse discipline: dall'idea di sistema fisico a quella di ecosistema, [...] (con 'tempo' multidimensionale) sullo spazio quoziente di volume finito G/D; il flusso è definito dall'azione di un sottogruppo unipotente U⊂G sulle classi laterali tramite la traslazione sinistra.
La prima congettura afferma che la chiusura di ogni ...
Leggi Tutto
L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea
Jeremy Gray
Dalla geometria proiettiva alla geometria euclidea
La geometria proiettiva
La carriera del matematico francese [...] , mentre quella non euclidea si ottiene considerando i punti situati all'interno di una data conica arbitraria e il sottogruppo delle trasformazioni proiettive che trasformano la conica in sé. La geometria affine piana si ottiene eliminando una retta ...
Leggi Tutto
sottogruppo
s. m. [comp. di sotto- e gruppo]. – Ciascuno dei gruppi minori in cui un gruppo è o può essere suddiviso: gruppi e s. sociali, economici, chimici. In matematica, sottoinsieme G di un gruppo G′, che, con la stessa operazione di...
sotto-
– È la prep. (e avv.) sotto, usata come prefisso per la formazione di molti composti nominali e verbali, in alcuni dei quali conserva il sign. e anche la funzione di preposizione (come negli avv. sottaceto, sottochiave, sottocosto,...