• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
7 risultati
Tutti i risultati [91]
Analisi matematica [7]
Matematica [22]
Fisica [19]
Fisica matematica [10]
Temi generali [9]
Storia della matematica [7]
Medicina [6]
Ingegneria [7]
Biologia [5]
Diritto [5]

quadratura

Dizionario delle Scienze Fisiche (1996)

quadratura quadratura [Lat. quadratura, da quadrare "ridurre a quadrato"] [ANM] Sinon. di integrazione, cioè calcolo di un integrale definito (in quanto vari integrali definiti rappresentano aree di [...] che si possono considerare ben note. Esempi di problemi risolti da q. sono la determinazione dei moti dei sistemi integrabili elementari della meccanica classica o la risoluzione dei modelli risolubili della meccanica statistica: v. perturbazioni in ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – GEOFISICA – ALGEBRA – ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su quadratura (1)
Mostra Tutti

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali Thomas Archibald Equazioni differenziali alle derivate parziali Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] 'jacobiano' ‒ certo non indicato con questo termine ‒ era ben noto per i sistemi di variabili più usati. Persino negli integrali impropri si invertiva l'ordine di integrazione senza una giustificazione rigorosa. Sembra che sia stato Euler il primo a ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] In particolare, diremo anche che gli elementi x ∈ M, y ∈ N sono ortogonali. Un ‛sistema ortogonale' è un sottoinsieme Q, per il quale si ha che per x ∈ Q, y ∈ classi di equivalenza di) funzioni X → K p-integrabili (1 ≤ p 〈 + ∞), con la norma ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

L'Età dei Lumi: matematica. Le equazioni differenziali

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Le equazioni differenziali Silvia Mazzone Clara Silvia Roero Le equazioni differenziali E con la nascita del calcolo infinitesimale di Newton e di Leibniz, nella seconda [...] M(x,y)dx+N(x,y)dy=0 verifica la condizione essa è integrabile e i suoi integrali sono dati nella forma implicita F(x,y)=c, condizione di Clairaut-Euler vista poc'anzi, deduce il sistema di equazioni che, in termini delle derivate parziali seconde ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Misura e integrazione

Enciclopedia del Novecento (1979)

Misura e integrazione M. Evans Munroe Introduzione La nozione di integrale viene spesso introdotta considerando il problema di determinare l'area racchiusa da una curva, prendendo un limite di somme [...] ϑ. Sia τ una qualsiasi funzione non negativa da ϑ al sistema esteso dei numeri reali, tale che τ(0/ )=0. consideriamo la funzione a valori reali F(f) su X. Diremo che f è integrabile secondo Pettis se, e soltanto se, esiste un unico a∈B tale che ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: TEOREMA DELLA CONVERGENZA MONOTONA – FUNZIONALI LINEARI CONTINUI – CONVERGENZA INCONDIZIONATA – INTEGRAZIONE DI LEBESGUE – RELAZIONE DI EQUIVALENZA

gruppi quantistici

Enciclopedia della Scienza e della Tecnica (2008)

gruppi quantistici Luca Tomassini Struttura algebrica introdotta e analizzata a partire dagli anni Ottanta del secolo scorso dai matematici russi Ludwig Faddeev e Vladimir Drinfeld e dal giapponese [...] duale dell’algebra Fq(G). La struttura di gruppo quantistico trae origine dallo studio di alcuni modelli (sistemi dinamici) integrabili. Trova oggi applicazione in teoria dei campi e più in generale in fisica matematica. → Geometria non commutativa ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: ALGEBRA COMMUTATIVA – STRUTTURA ALGEBRICA – GRUPPO DI SIMMETRIE – VLADIMIR DRINFELD – FISICA MATEMATICA

Gel'fand Izrail' Moiseevich

Dizionario delle Scienze Fisiche (1996)

Gel'fand Izrail' Moiseevich Gel'fand (anche Gelfand) 〈gÝèlfant〉 Izrail' Moiseevich [STF] (n. Krasnye Okny, Odessa, 1913) Prof. nell'univ. di Mosca (1931); socio straniero dei Lincei (1989). ◆ [ALG] Algebra [...] di G.-Levitan-Marchenko: v. solitone: V 406 b. ◆ [ANM] Gerarchia di equazioni di evoluzione integrabili di G. o di G.-Dikii: v. hamiltoniani, sistemi infinito-dimensionali: III 145 e. ◆ [ANM] Teorema di G.-Naimark: v. algebre di operatori: I ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
Vocabolario
sistèma
sistema sistèma s. m. [dal lat. tardo systema, gr. σύστημα, propr. «riunione, complesso» (da cui varî sign. estens.), der. di συνίστημι «porre insieme, riunire»] (pl. -i). – 1. Nell’ambito scientifico, qualsiasi oggetto di studio che, pur...
integrazióne
integrazióne s. f. [dal lat. integratio -onis, con influenza, nel sign. 3, dell’ingl. integration]. – 1. In senso generico, il fatto di integrare, di rendere intero, pieno, perfetto ciò che è incompleto o insufficiente a un determinato scopo,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali