MMark Kac
di Mark Kac
SOMMARIO: 1. Preliminari. □ 2. Alcune sottigliezze matematiche. □ 3. Alcune classi generali di processi stocastici con esempi: a) processi di Markov con spazio degli stati finito [...] infinito (x svolge qui il ruolo del tempo). Gli stati del sistema sono ‛vettori' (n1, n2, ...), dove nk denota il numero di particelle di energia kε; possiamo scrivere l'equazionedi Kolmogorov per W(n1, n2, ...; x), che rappresenta la probabilità ...
Leggi Tutto
L'Ottocento: matematica. Meccanica analitica
Helmut Pulte
Meccanica analitica
La meccanica analitica è una branca della meccanica razionale la quale, dopo i primi passi compiuti nel XVII sec., ebbe [...] che esso non si applica soltanto a vincoli dati sotto forma di disequazioni [5*], ma anche a sistemi meccanici nei quali i vincoli possono comparire sotto forma diequazioni e di disequazioni, come per esempio nel caso del moto (non troppo veloce ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] stabiliscono i teoremi di esistenza e di unicità; sono studiate in modo particolare le equazioni e i sistemidiequazioni differenziali lineari.
Il quinto capitolo sviluppa lo studio locale di una funzione. Si spiegano le relazioni di confronto e si ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali
Haïm Brezis
Felix Browder
Equazioni differenziali alle derivate parziali
Lo studio delle equazioni [...] fu generalizzato da Frigyes Riesz alla fine degli anni Quaranta del Novecento. Teorie sistematiche delle equazioni iperboliche e disistemidi ordine qualunque furono sviluppate da vari matematici, in particolare da Ivan Georgieviã Petrovskij e Leray ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale
Angus E. Taylor
Le origini dell'analisi funzionale
L'analisi funzionale acquista una precisa identità nel [...]
L'approccio scelto da Hilbert per sviluppare le idee suggeritegli dal lavoro di Fredholm sulle equazioni integrali lo spinse a usare quello che viene oggi chiamato un sistema ortonormale completo di elementi in C[a,b], per associare a una funzione f ...
Leggi Tutto
La grande scienza. Calcolo delle variazioni
Gianni Dal Maso
Calcolo delle variazioni
Un problema di grande importanza nella matematica pura e applicata è la ricerca dei valori massimi o minimi di grandezze [...] a partire dalla fine degli anni Settanta per il loro legame con problemi di elasticità non lineare.
L'equazionedi Euler diventa un sistemadi m equazioni alle derivate parziali del secondo ordine nelle m funzioni incognite u1,…,um:
Teoremi ...
Leggi Tutto
Numeri
Umberto Zannier
Quanti? Quanto? Quando? A che distanza? Domande a cui rispondiamo, di solito, con numeri. Di essi facciamo continuo uso, e l’importanza concettuale, oltre che pratica, della nozione [...] troppo lunga per chi non possieda un elenco rovesciato. Alcuni sistemi a chiave pubblica assai semplici e, nello stesso tempo, i suoi teoremi a certe classi, speciali ma significative, diequazioni diofantee, per decidere se vi siano o no soluzioni ...
Leggi Tutto
Analisi matematica
Jean A. Dieudonné
Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] , che collegano la geometria alla teoria dell'integrazione rendendo possibile lo studio dei più generali sistemidiequazioni lineari in tali spazi.
Un passo decisivo nello sviluppo dell'analisi fu compiuto nel 1922 da Stefan Banach con la creazione ...
Leggi Tutto
Analisi non lineare: metodi variazionali
Antonio Ambrosetti
I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] Ω indica la frontiera dell'aperto Ω).
Nel primo caso, la [3] diventa un sistemadi m equazioni ordinarie
[9] formula
mentre nel secondo otteniamo un'equazione alle derivate parziali del secondo ordine:
[10] formula
dove uxi indica la funzione ∂u ...
Leggi Tutto
Modelli
Patrick Suppes
Il significato del termine 'modello' nelle scienze
Il termine 'modello' non è usato esclusivamente in ambito scientifico, ma nei contesti più vari. Ciascuno di noi sa che cosa [...] di formalizzare un qualche particolare sistema teorico di comportamento, anche se l'influsso delle teorie di è assimilabile ai casi classici di derivazione diequazioni differenziali, fatta sulla base di particolari ipotesi. Il punto essenziale ...
Leggi Tutto
sistema
sistèma s. m. [dal lat. tardo systema, gr. σύστημα, propr. «riunione, complesso» (da cui varî sign. estens.), der. di συνίστημι «porre insieme, riunire»] (pl. -i). – 1. Nell’ambito scientifico, qualsiasi oggetto di studio che, pur...
equazione
equazióne s. f. [dal lat. aequatio -onis, der. di aequare «uguagliare»]. – Propr., uguaglianza, uguagliamento, pareggiamento. Il termine, raro con uso generico (si adopera tuttavia, a volte, nel linguaggio letter. e in frasi di tono...