• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
atlante
il chiasmo
lingua italiana
111 risultati
Tutti i risultati [945]
Matematica [111]
Biografie [115]
Temi generali [66]
Arti visive [69]
Fisica [62]
Filosofia [51]
Letteratura [46]
Storia [39]
Storia della matematica [40]
Medicina [33]

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali Haïm Brezis Felix Browder Equazioni differenziali alle derivate parziali Lo studio delle equazioni [...] dimostrare l'esistenza di funzioni armoniche, fu messa seriamente in dubbio. Questo programma fu ristabilito come fondamentale che nell'ipotesi di compattezza ogni ramo o si estende all'infinito (in XxR), o finisce in un altro punto di biforcazione ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La grande scienza. Automi e linguaggi formali

Storia della Scienza (2003)

La grande scienza. Automi e linguaggi formali Dominique Perrin Automi e linguaggi formali La teoria degli automi e dei linguaggi formali ha lo scopo di descrivere le proprietà delle successioni di simboli. [...] di Rabin. La dimostrazione si può capire meglio grazie a una serie di idee avanzate da Juri Gurevich e Leo Harrington, il Una delle definizioni equivalenti di parola sturmiana è quella di una parola infinita x tale che per ogni n il numero p(n) di ... Leggi Tutto
CATEGORIA: MATEMATICA APPLICATA – CIBERNETICA E INTELLIGENZA ARTIFICIALE

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] formano le lamine di sapone. Ma può anche trattarsi di superfici infinite senza bordo, ciascuna componente delle quali è di area minima. torsione, è nulla. Cartan discusse queste idee in due serie di conferenze a Toronto nel 1924 e a Berna nel 1927 ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

NUMERI

XXI Secolo (2010)

Numeri Umberto Zannier Quanti? Quanto? Quando? A che distanza? Domande a cui rispondiamo, di solito, con numeri. Di essi facciamo continuo uso, e l’importanza concettuale, oltre che pratica, della nozione [...] i numeri algebrici. Se però consideriamo arbitrari numeri reali, definiti quindi da procedimenti come la somma di una serie infinita o altri tipi di limite, diventa problematico anche semplicemente decidere in tempo finito se due dati numeri siano o ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – ARITMETICA

Analisi matematica

Enciclopedia della Scienza e della Tecnica (2007)

Analisi matematica Jean A. Dieudonné Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] con se stesso. Per tutti i μ≠λ in Sp(U) si ha N(μ)⊂F(λ). Infine, se E è uno spazio di Banach, (U−ζI)−1 è una funzione meromorfa di ζ nel di prima specie per l'operatore [14]): se yn=Pn∙y, la serie ∑n(∥yn∥2/λn) dev'essere convergente, e ∑nyn/λn è una ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – TEOREMA DI APPROSSIMAZIONE DI WEIERSTRASS – EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONE INTEGRALE DI VOLTERRA – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Analisi matematica (4)
Mostra Tutti

Analisi non lineare: metodi variazionali

Enciclopedia della Scienza e della Tecnica (2007)

Analisi non lineare: metodi variazionali Antonio Ambrosetti I primi problemi di calcolo delle variazioni si presentano quasi spontaneamente, anche nello studio della geometria elementare e hanno infatti [...] )≠0, ∀u≠0; (c) ∇J è compatto; (d) J(u)=J(−u). Allora J ha infiniti punti critici sulla sfera S. Qui si usano le condizioni (a-b-c-d) per provare che J verifica termine che rompe la simmetria. In una serie di articoli Pierre-Louis Lions ha sviluppato ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE ALLE DERIVATE PARZIALI – PROBLEMA DELLA BRACHISTOCRONA – CALCOLO DELLE VARIAZIONI – EQUAZIONE DI SCHRÖDINGER – PROIEZIONE STEREOGRAFICA

Matematica: problemi aperti

Enciclopedia della Scienza e della Tecnica (2007)

Matematica: problemi aperti Claudio Procesi Prima di parlare dei problemi aperti nella matematica è bene riflettere su quelli che ne hanno segnato la storia passata. Sono infatti proprio questi che [...] e la discussione del problema P verso NP) è se esistano infiniti primi di Sophie Germain, ovvero della forma p=2q+1 in n)≡∫n2(logt)−1dt L'inizio dell'analisi consiste nel notare che la serie ζ(s)=∑∞n=11/ns (con s variabile complessa) è convergente ... Leggi Tutto
CATEGORIA: TEMI GENERALI
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – CONGETTURA DI BIRCH E SWINNERTON-DYER – INTERNATIONAL MATHEMATICAL UNION – METODO DI ELIMINAZIONE DI GAUSS – FUNZIONE DI VARIABILE COMPLESSA
Mostra altri risultati Nascondi altri risultati su Matematica: problemi aperti (14)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri Günther Frei Teoria analitica dei numeri La teoria analitica dei numeri non è una teoria matematica ben definita, [...] è un numero reale. Se si fa tendere s a 1+ si dimostra che esistono infiniti numeri primi in quanto la serie armonica ∑1/n è divergente. Prendendo il logaritmo del prodotto infinito Euler dimostra però un risultato molto più forte, e cioè che già la ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo John McCleary La topologia algebrica all'inizio del XX secolo Le radici della topologia algebrica [...] che sfidano ancora oggi i matematici. Omologia In una serie di memorie Sur les courbes définies par une équation una F:S3→S3 con una G:S2→S2, egli dimostrò che esistono infinite applicazioni non omotope S3→S2. L'importanza del lavoro di Hopf non ... Leggi Tutto
CATEGORIA: GEOMETRIA

Dimostrazione, teoria della

Enciclopedia della Scienza e della Tecnica (2007)

Dimostrazione, teoria della Jean-Yves Girard La teoria della dimostrazione nasce negli anni Venti del Novecento come strumento di realizzazione del programma di David Hilbert per la fondazione della [...] una dimostrazione di ⇒A, altrimenti ci sarà almeno un ramo infinito ai cui vertici stanno sequenti Γn ⇒Δn che possiamo completare avremo una regola di scambio senza restrizioni e due serie di quattro regole ciascuna per lo scambio senza restrizioni, ... Leggi Tutto
CATEGORIA: LOGICA MATEMATICA
TAGS: FUNZIONE RICORSIVA PRIMITIVA – TEORIA DELLA DIMOSTRAZIONE – QUANTIFICATORE UNIVERSALE – LOGICA DEL PRIMO ORDINE – TEORIA DELLE CATEGORIE
1 2 3 4 5 6 7 8 ... 12
Vocabolario
infinito
infinito agg. e s. m. [dal lat. infinitus, comp. di in-2 e finitus, part. pass. di finire «limitare»]. – 1. agg. a. Che non ha principio né fine; che non ha limiti: il tempo i.; lo spazio i.; la misericordia di Dio è i.; i. silenzio (Leopardi)....
sèrie
serie sèrie s. f. [dal lat. series, der. di serĕre «intrecciare, infilare»]. – 1. Successione ordinata e continua di elementi, concreti o astratti, dello stesso genere: è il quarto nella s. dei papi, degli imperatori romani; la s. dei numeri...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali