• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
vocabolario
16 risultati
Tutti i risultati [36]
Matematica [16]
Geometria [3]
Fisica [5]
Algebra [4]
Analisi matematica [4]
Storia della matematica [4]
Geografia [2]
Corpi celesti [1]
Geografia fisica [1]
Astronomia [1]

Beurling, Arne Karl-August

Enciclopedia on line

Matematico svedese (Göteborg 1905 - Princeton 1986). Prof. all'Univ. di Uppsala (1937-54) e, dal 1954, all'Institute for advanced study di Princeton, ha dato fondamentali contributi all'analisi complessa, [...] si deve il concetto di distanza estremale, estremo superiore della distanza tra punti di un dominio del piano x): per h(x) crescente in R esiste un'applicazione quasi conforme del semipiano superiore in sé, con valori h(x) sull'asse x, se e solo se ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: INSTITUTE FOR ADVANCED STUDY – PIANO COMPLESSO – GÖTEBORG – UPPSALA

Geometria differenziale

Enciclopedia del Novecento (1978)

Geometria differenziale SShoshichi Kobayashi di Shoshichi Kobayashi Geometria differenziale sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] . (Nonostante il fatto che Sn non sia limitato, esso è equivalente a un dominio limitato esattamente come il semipiano superiore ordinario in C è ‛conformemente' equivalente al disco unitario). L'operatore di differenziazione esterna d su una varietà ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – FUNZIONI DI VARIABILE COMPLESSA – REGIONE SEMPLICEMENTE CONNESSA – CALCOLO DIFFERENZIALE ASSOLUTO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

Geometria algebrica

Enciclopedia del Novecento II Supplemento (1998)

GEOMETRIA ALGEBRICA Ciro Ciliberto Igor R. Shafarevich Lo sviluppo delle idee di Ciro Ciliberto Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] che significa che, se S = X + iY, con X e Y reali, allora Y è definita positiva. Tali matrici formano il cosiddetto ‛semipiano superiore di Siegel', che si denota con Hn. Se D = E, due matrici S′ e S definiscono varietà abeliane isomorfe se e solo se ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – ACCADEMIA NAZIONALE DELLE SCIENZE DETTA DEI XL – EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – SCUOLA ITALIANA DI GEOMETRIA ALGEBRICA – CARATTERISTICA DI EULERO-POINCARÉ
Mostra altri risultati Nascondi altri risultati su Geometria algebrica (2)
Mostra Tutti

Fermat, ultimo teorema di

Enciclopedia del Novecento (2004)

Fermat, ultimo teorema di MMassimo Bertolini di Massimo Bertolini SOMMARIO: 1. Introduzione. ▭ 2. Storia: il lavoro di Kummer. ▭ 3. Estensioni abeliane di Q. ▭ 4. Estensioni esplicite di campi e funzioni [...] , indicata con X0(1) e chiamata 'curva modulare di livello uno', è quindi uguale al quoziente ℋ*/SL2(Z), dove ℋ* indica il semipiano superiore esteso ℋ⋃P1(Q). Si tratta di una curva proiettiva, isomorfa a P1(C). L'isomorfismo da X0(1) a P1(C) è ... Leggi Tutto
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – RELAZIONE DI EQUIVALENZA – POLINOMIO IRRIDUCIBILE – ALEXANDER GROTHENDIECK – ADRIEN MARIE LEGENDRE
Mostra altri risultati Nascondi altri risultati su Fermat, ultimo teorema di (2)
Mostra Tutti

Variazioni, calcolo delle

Enciclopedia del Novecento II Supplemento (1998)

Variazioni, calcolo delle Giuseppe Buttazzo Gianni Dal Maso e Ennio De Giorgi SOMMARIO: 1. Introduzione.  2. Alcuni esempi storici: a) il problema isoperimetrico; b) il principio di Fermat e le leggi [...] semplificata dal fatto che, per ovvie ragioni geometriche, la traiettoria che fornisce la soluzione deve essere rettilinea nel semipiano superiore e in quello inferiore, e dunque l'unica incognita è la coordinata del vertice della spezzata che giace ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE ALLE DERIVATE PARZIALI – METODO DEI MOLTIPLICATORI DI LAGRANGE – CONDIZIONI AL CONTORNO DI NEUMANN – EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE DI EULERO-LAGRANGE
Mostra altri risultati Nascondi altri risultati su Variazioni, calcolo delle (4)
Mostra Tutti

Numeri, teoria dei

Enciclopedia del Novecento (1979)

Numeri, teoria dei LLarry Joel Goldstein di Larry Joel Goldstein SOMMARIO: 1. Introduzione: a) argomenti fondamentali; b) la teoria dei numeri nel XVII e XVIII secolo; c) Gauss. □ 2. Teoria algebrica [...] gruppo delle matrici 2×2 con elementi interi e determinante 1. Γ è chiamato ‛gruppo modulare ellittico'. Indichiamo con ???OUT-H???, il semipiano superiore complesso, cioè l'insieme di tutti i numeri complessi x+iy, x, y reali, y>0. Se è in Γ, γ ... Leggi Tutto
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – LEGGE DI RECIPROCITÀ QUADRATICA – DOMINIO A FATTORIZZAZIONE UNICA – COSTRUIBILE CON RIGA E COMPASSO – TEOREMA DI KRONECKER-WEBER

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali Thomas Archibald Equazioni differenziali alle derivate parziali Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] soluzione di problemi al contorno fu fornito dalle cosiddette applicazioni di Schwarz-Christoffel, le quali trasformano il semipiano superiore in poligoni; tali trasformazioni furono scoperte, verso la fine degli anni Sessanta del XIX sec. da Elwin ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Numeri, teoria dei

Enciclopedia della Scienza e della Tecnica (2007)

Numeri, teoria dei Larry Joel Goldstein La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri …, −4, −3, −2, [...] Γ il gruppo delle matrici 2×2 con elementi interi e determinante 1. Γ è chiamato gruppo modulare ellittico. Indichiamo con ℍ il semipiano superiore complesso, cioè l'insieme di tutti i numeri complessi x+iy, con x,y reali e y>0. Se [36] formula ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – DOMINIO A FATTORIZZAZIONE UNICA – LEGGE DI RECIPROCITÀ QUADRATICA – CHARLES DE LA VALLÉE POUSSIN – TEOREMA DI KRONECKER-WEBER
Mostra altri risultati Nascondi altri risultati su Numeri, teoria dei (4)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Problemi di analisi complessa alla fine dell'Ottocento Jeremy Gray Problemi di analisi complessa alla fine dell'Ottocento La teoria generale [...] agiscano geometricamente sul piano complesso spostando globalmente la regione fondamentale e con essa pavimentano il semipiano superiore. Le regioni fondamentali dei sottogruppi sono costituite da più copie della regione fondamentale della funzione ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

forme modulari

Enciclopedia della Scienza e della Tecnica (2008)

forme modulari Massimo Bertolini Si indichi con SL2(ℤ) il gruppo delle matrici 2×2 a coeffcienti nell’anello ℤ degli interi relativi aventi determinante 1, e con Γ0(N) il sottogruppo contenente le matrici [...] in serie di Fourier come [2] In conclusione, si può dire informalmente che una forma modulare è una funzione olomorfa sul semipiano superiore e all’infinito, simmetrica rispetto a Γ. Continuando a supporre N=1, si consideri l’esempio delle serie di ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: FUNZIONE ZETA DI RIEMANN – ULTIMO TEOREMA DI FERMAT – EQUAZIONE FUNZIONALE – SEMIPIANO SUPERIORE – PRODOTTO DI MATRICI
Mostra altri risultati Nascondi altri risultati su forme modulari (1)
Mostra Tutti
1 2
Vocabolario
meridiano
meridiano agg. e s. m. [dal lat. meridianus, der. di meridies «mezzogiorno»]. – 1. agg. Di mezzogiorno: le ore m.; il sole m.; calore m.; il m. ozio dell’aie (Pascoli); lontana, entro ai riverberi m., spuntava una cima rocciosa (Buzzati)....
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali