• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
179 risultati
Tutti i risultati [607]
Matematica [179]
Biografie [148]
Musica [93]
Fisica [50]
Analisi matematica [44]
Algebra [41]
Storia della matematica [39]
Fisica matematica [38]
Geometria [27]
Temi generali [26]

ramificazione

Dizionario delle Scienze Fisiche (1996)

ramificazione ramificazióne [Der. del lat. ramificatio -onis (→ ramificato)] [ALG] Nozione che interviene nella topologia delle superfici di Riemann: v. Riemann, superfici di: V 4 b, anche per l'indice [...] di r., l'ordine totale di r. e l'ordine di ramificazione. ◆ [FSN] Il processo di decadimento di un radionuclide quando può dar luogo a diversi prodotti, detti anche frazioni di r., per quanto propr. la ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – FISICA NUCLEARE – ALGEBRA

monogeneita

Dizionario delle Scienze Fisiche (1996)

monogeneita monogeneità [Der. di monogeno] [ANM] Condizioni di m.: lo stesso che condizioni di olomorfia di Cauchy-Riemann, che devono essere soddisfatte affinché una funzione sia analitica: la funzione [...] complessa f(z)=u(x, y)+iv(x, y) della variabile complessa z=x+iy è monogena od olomorfa o analitica in un dominio A se è derivabile in ogni punto di A; ciò si verifica se e solo se sono soddisfatte le ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA

zeta

Enciclopedia on line

zeta Sesta lettera dell’alfabeto greco (maiuscolo Ζ, minuscolo ζ), corrispondente alla consonante latina zeta. In matematica, funzione z. di Riemann Particolare funzione della variabile complessa s (➔ [...] Riemann, Bernhard). ... Leggi Tutto
CATEGORIA: LINGUISTICA GENERALE – ALGEBRA
TAGS: MATEMATICA
Mostra altri risultati Nascondi altri risultati su zeta (1)
Mostra Tutti

Roch Gustav

Dizionario delle Scienze Fisiche (1996)

Roch Gustav Roch 〈ròk〉 Gustav [STF] (Dresda 1839 - Venezia 1866) Prof. di matematica nell'univ. di Halle (1863). ◆ [ALG] Teorema di Riemann-R.: v. superfici di Riemann: V 5 c. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA

L'Ottocento: matematica. La geometria non euclidea

Storia della Scienza (2003)

L'Ottocento: matematica. La geometria non euclidea Rossana Tazzioli La geometria non euclidea Alla base dei suoi Elementi Euclide aveva posto un certo numero di definizioni (o 'termini') e di assiomi [...] studio dei fondamenti della geometria. Tale oscurità non era stata superata 'da Euclide fino a Legendre'. Nella lezione di Riemann una grandezza pluriestesa, che ha inizialmente il significato di un generico insieme di punti, viene poi dotata di una ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. I fondamenti della geometria

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. I fondamenti della geometria Umberto Bottazzini I fondamenti della geometria Verso la metà del XIX sec. Georg Friedrich Bernhard Riemann (1826-1866) [...] fatti di esperienza, che non sono necessari ma "possiedono solo una certezza empirica, sono ipotesi". Le 'ipotesi' di Riemann non costituiscono dunque un momento di una ricerca sui fondamenti assiomatici della geometria, ma il tentativo di stabilire ... Leggi Tutto
CATEGORIA: GEOMETRIA

Roch, Gustav

Enciclopedia on line

Matematico tedesco (Dresda 1839 - Venezia 1866), prof. alla univ. di Halle; il suo nome è legato soprattutto al completamento di un teorema di B. Riemann, fondamentale per la geometria sopra una curva [...] (De theoremate quodam circa functiones abelianas, 1863): v. Riemann, Bernhard. ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: VENEZIA – TEDESCO – DRESDA – HALLE

Misura e integrazione

Enciclopedia del Novecento (1979)

Misura e integrazione M. Evans Munroe Introduzione La nozione di integrale viene spesso introdotta considerando il problema di determinare l'area racchiusa da una curva, prendendo un limite di somme [...] ha un numero finito di discontinuità. Tuttavia, se allora g=χS[q. o.], e l'argomentazione seguente mostra che g non è integrabile secondo Riemann. Sia Z l'insieme di misura zero su cui g≠χS e sia T=([0, 1]−S). Essendo allora Sia x∈T; risulta g ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: TEOREMA DELLA CONVERGENZA MONOTONA – FUNZIONALI LINEARI CONTINUI – CONVERGENZA INCONDIZIONATA – INTEGRAZIONE DI LEBESGUE – RELAZIONE DI EQUIVALENZA

geometria

Enciclopedia on line

In senso ampio e generico, ramo della matematica che studia lo spazio e le figure spaziali. Cenni storiciL’antichità - L’origine della g. è legata a concreti problemi di misurazione del terreno (nacque [...] o di Lobačevskij, nella quale si postula che da ogni punto escono due parallele a una retta data, e la g. ellittica o di Riemann, nella quale si postula la non esistenza di parallele. Come caso limite di entrambe si ha la g. parabolica, che è la g ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: OPERAZIONI DI PROIEZIONE E SEZIONE – TEORIA QUANTISTICA DEI CAMPI – TEORIA DELLE SUPERSTRINGHE – POSTULATO DELLE PARALLELE – METODO DELL’ASSONOMETRIA
Mostra altri risultati Nascondi altri risultati su geometria (13)
Mostra Tutti

specialita

Dizionario delle Scienze Fisiche (1996)

specialita specialità [Der. del lat. specialitas -atis, da specialis "speciale"] [LSF] L'esser speciale; natura particolare, carattere singolare. ◆ [ALG] Indice di s.: v. Riemann, superfici di: V 5 c. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – TEMI GENERALI – ALGEBRA
1 2 3 4 5 6 7 8 ... 18
Vocabolario
riemanniano
riemanniano 〈rim–〉 agg. – Relativo al matematico ted. Bernhard Riemann 〈rìiman〉 (1826-1866): geometria r. (o di Riemann o ellittica), tipo di geometria non euclidea nella quale non esistono rette parallele e, rispetto alla geometria euclidea,...
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali