• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
27 risultati
Tutti i risultati [607]
Geometria [27]
Matematica [179]
Biografie [148]
Musica [93]
Fisica [50]
Analisi matematica [44]
Algebra [41]
Storia della matematica [39]
Fisica matematica [38]
Temi generali [26]

La seconda rivoluzione scientifica: matematica e logica. La topologia degli insiemi di punti

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La topologia degli insiemi di punti Roger Cooke Brian Griffith La topologia degli insiemi di punti La topologia generale o topologia degli insiemi [...] , pubblicata dopo la sua morte, nel 1867. Questo scritto, nel quale viene tra l'altro sviluppato in due pagine l'integrale di Riemann, era destinato a fornire lo stimolo per la creazione di lì a poco sia della teoria degli insiemi sia della topologia ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

Geometria differenziale

Enciclopedia del Novecento (1978)

Geometria differenziale SShoshichi Kobayashi di Shoshichi Kobayashi Geometria differenziale sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] fibrato di rette banale. Allora χp(M;E)=Σ(−1)i dim Hi(M;Ωp(E)) è una specie di numero di Eulero e il teorema di Riemann-Roch-Hirzebruch esprime χp(M;E) mediante le classi di Chern di E e di M quando M è una varietà algebrica. Questo risultato è stato ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – FUNZIONI DI VARIABILE COMPLESSA – REGIONE SEMPLICEMENTE CONNESSA – CALCOLO DIFFERENZIALE ASSOLUTO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

Millennium Problems

Enciclopedia on line

Selezione di 7 problemi matematici proposti nel 2000 dal Clay Mathematics Institute (CMI) di Cambridge, Massachusetts, che ha stanziato per la risoluzione di ognuno di essi un premio di 1 milione di dollari. [...] i matematici, così come fecero i problemi proposti da D. Hilbert nel 1900. Tra i 7 problemi solo l’ipotesi di Riemann si trovava tra i 23 problemi di Hilbert. Nel 2002 G. Perelman ha presentato una dimostrazione, accettata nel 2006, della congettura ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – GEOMETRIA
TAGS: PARTICELLE ELEMENTARI – IPOTESI DI RIEMANN – MODELLO STANDARD – MASSACHUSETTS – ALGORITMO

curvatura scalare

Enciclopedia della Scienza e della Tecnica (2008)

curvatura scalare Luca Tomassini Sia Mν una varietà riemanniana regolare, ovvero una varietà C∞ sulla quale è specificato un campo tensoriale definito positivo g(x) (x indica qui un sistema di coordinate [...] spazio dei campi vettoriali regolari tangenti a Mν. La curvatura su Mν è normalmente caratterizzata in termini del tensore di (curvatura di) Riemann, un’applicazione multilineare R:TMν×TMν× ×TMν→TMν definita dalla formula R(X,Y)Z = ∇Χ∇ϒ Z − ∇ϒ ∇Χ Z ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: APPLICAZIONE MULTILINEARE – SIMBOLI DI CHRISTOFFEL – VARIETÀ RIEMANNIANA – DERIVATA COVARIANTE – TRASPORTO PARALLELO

L'Ottocento: matematica. Geometria superiore

Storia della Scienza (2003)

L'Ottocento: matematica. Geometria superiore David E. Rowe Geometria superiore Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] -1899) e di Wilhelm Karl Killing (1847-1923) fu chiarito il loro ruolo non solo in relazione al problema di Riemann-Helmholtz, ma anche riguardo alle forme di Clifford-Klein. Intorno alla fine del secolo, Jules-Henri Poincaré introdusse molti degli ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – OTTICA – STORIA DELLA FISICA – GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo John McCleary La topologia algebrica all'inizio del XX secolo Le radici della topologia algebrica [...] e proseguita da William Thomson (lord Kelvin) e Peter Guthrie Tait e, infine, le ricerche di Georg Friedrich Bernhard Riemann sulle funzioni complesse. L'estensione di queste idee, in particolare per opera di Jules-Henri Poincaré e Luitzen Egbertus ... Leggi Tutto
CATEGORIA: GEOMETRIA

struttura di spin

Enciclopedia della Scienza e della Tecnica (2008)

struttura di spin Luca Tomassini Un fibrato principale π∼:P∼→M su una varietà n-dimensionale M con gruppo di struttura Spinn che sia ottenuto come ricoprimento di un qualche fibrato principale π [...] pari e n=2r+1 se è dispari. Gli elementi dello spazio S sono detti spinori. Il caso più importante è quello di una varietà di Riemann M con metrica g: il fibrato principale π:P→M è ottenuto considerando l’azione di SOn su T*(M), il duale del fibrato ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – GEOMETRIA
TAGS: VARIETÀ RIEMANNIANA – COMPONENTE CONNESSA – DERIVATE COVARIANTI – VETTORI ORTONORMALI – FIBRATO VETTORIALE

spazio

Enciclopedia on line

spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] sua geometria non è dato a priori. Riuscendo a scoprire altri tipi di s. prima non previsti, il metodo analitico di Riemann si è mostrato più fecondo dei metodi sintetici con cui si era arrivati alle geometrie non euclidee. La fisica. Oltre alla ... Leggi Tutto
CATEGORIA: CORPI CELESTI – COSMOLOGIA – DISCIPLINE STRUMENTI E TECNICHE DI RICERCA – TEMI GENERALI – ASTROFISICA E FISICA SPAZIALE – FISICA MATEMATICA – GEOGRAFIA FISICA – GEOMETRIA – DISCIPLINE – DIRITTO COMUNITARIO E DIRITTO INTERNAZIONALE – STORIA E FILOSOFIA DEL DIRITTO – DOTTRINE TEORIE E CONCETTI – FILOSOFIA DEL DIRITTO – METAFISICA – POLITOLOGIA – TRASPORTI AEREI
TAGS: COMPLEMENTARE DI UN INSIEME – POSTULATO DELLE PARALLELE – CAMPO MAGNETICO TERRESTRE – OSSERVATORIO ASTRONOMICO – CORRISPONDENZA BIUNIVOCA
Mostra altri risultati Nascondi altri risultati su spazio (10)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Il calcolo geometrico

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il calcolo geometrico Paolo Freguglia Gert Schubring Il calcolo geometrico Quando pubblicò il trattato Die lineale Ausdehnungslehre (La teoria [...] spazio, presentata senza alcun collegamento, per esempio, con gli sviluppi della teoria delle varietà che si riallacciava a Riemann. Ecco perché Felix Christian Klein (1849-1925) ha parlato dei 'grassmanniani' come di una 'setta', dedita soltanto a ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

curvatura

Enciclopedia della Scienza e della Tecnica (2008)

curvatura Luca Tomassini Termine generale che indica una serie di caratteristiche quantitative (in termini di numeri, vettori, tensori) descriventi il grado al quale un determinato oggetto geometrico [...] dello spazio nel quale la superficie stessa è immersa. Si tratta dunque di una proprietà intrinseca, un’osservazione che opportunamente generalizzata sarà posta da Bernhard Riemann a fondamento della sua nuova geometria. → Geometria non commutativa ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: CARL FRIEDRICH GAUSS – THEOREMA EGREGIUM – BERNHARD RIEMANN – SPAZIO EUCLIDEO – RETTE TANGENTI
Mostra altri risultati Nascondi altri risultati su curvatura (4)
Mostra Tutti
1 2 3
Vocabolario
riemanniano
riemanniano 〈rim–〉 agg. – Relativo al matematico ted. Bernhard Riemann 〈rìiman〉 (1826-1866): geometria r. (o di Riemann o ellittica), tipo di geometria non euclidea nella quale non esistono rette parallele e, rispetto alla geometria euclidea,...
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali