La seconda rivoluzione scientifica: matematica e logica. La topologia degli insiemi di punti
Roger Cooke
Brian Griffith
La topologia degli insiemi di punti
La topologia generale o topologia degli insiemi [...] , pubblicata dopo la sua morte, nel 1867. Questo scritto, nel quale viene tra l'altro sviluppato in due pagine l'integrale di Riemann, era destinato a fornire lo stimolo per la creazione di lì a poco sia della teoria degli insiemi sia della topologia ...
Leggi Tutto
Geometria differenziale
SShoshichi Kobayashi
di Shoshichi Kobayashi
Geometria differenziale
sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] fibrato di rette banale. Allora χp(M;E)=Σ(−1)i dim Hi(M;Ωp(E)) è una specie di numero di Eulero e il teorema di Riemann-Roch-Hirzebruch esprime χp(M;E) mediante le classi di Chern di E e di M quando M è una varietà algebrica. Questo risultato è stato ...
Leggi Tutto
Selezione di 7 problemi matematici proposti nel 2000 dal Clay Mathematics Institute (CMI) di Cambridge, Massachusetts, che ha stanziato per la risoluzione di ognuno di essi un premio di 1 milione di dollari. [...] i matematici, così come fecero i problemi proposti da D. Hilbert nel 1900. Tra i 7 problemi solo l’ipotesi di Riemann si trovava tra i 23 problemi di Hilbert. Nel 2002 G. Perelman ha presentato una dimostrazione, accettata nel 2006, della congettura ...
Leggi Tutto
curvatura scalare
Luca Tomassini
Sia Mν una varietà riemanniana regolare, ovvero una varietà C∞ sulla quale è specificato un campo tensoriale definito positivo g(x) (x indica qui un sistema di coordinate [...] spazio dei campi vettoriali regolari tangenti a Mν. La curvatura su Mν è normalmente caratterizzata in termini del tensore di (curvatura di) Riemann, un’applicazione multilineare R:TMν×TMν× ×TMν→TMν definita dalla formula
R(X,Y)Z = ∇Χ∇ϒ Z − ∇ϒ ∇Χ Z ...
Leggi Tutto
L'Ottocento: matematica. Geometria superiore
David E. Rowe
Geometria superiore
Per gran parte del XIX sec., i matematici non ebbero un'idea ben definita del campo di ricerca che è possibile chiamare [...] -1899) e di Wilhelm Karl Killing (1847-1923) fu chiarito il loro ruolo non solo in relazione al problema di Riemann-Helmholtz, ma anche riguardo alle forme di Clifford-Klein. Intorno alla fine del secolo, Jules-Henri Poincaré introdusse molti degli ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo
John McCleary
La topologia algebrica all'inizio del XX secolo
Le radici della topologia algebrica [...] e proseguita da William Thomson (lord Kelvin) e Peter Guthrie Tait e, infine, le ricerche di Georg Friedrich Bernhard Riemann sulle funzioni complesse. L'estensione di queste idee, in particolare per opera di Jules-Henri Poincaré e Luitzen Egbertus ...
Leggi Tutto
struttura di spin
Luca Tomassini
Un fibrato principale π∼:P∼→M su una varietà n-dimensionale M con gruppo di struttura Spinn che sia ottenuto come ricoprimento di un qualche fibrato principale π [...] pari e n=2r+1 se è dispari. Gli elementi dello spazio S sono detti spinori. Il caso più importante è quello di una varietà di Riemann M con metrica g: il fibrato principale π:P→M è ottenuto considerando l’azione di SOn su T*(M), il duale del fibrato ...
Leggi Tutto
spazio Sostantivo polisenso che designa in generale un’estensione compresa tra due o più punti di riferimento. Può essere variamente interpretato a seconda che lo si consideri dal punto di vista filosofico, [...] sua geometria non è dato a priori. Riuscendo a scoprire altri tipi di s. prima non previsti, il metodo analitico di Riemann si è mostrato più fecondo dei metodi sintetici con cui si era arrivati alle geometrie non euclidee.
La fisica. Oltre alla ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il calcolo geometrico
Paolo Freguglia
Gert Schubring
Il calcolo geometrico
Quando pubblicò il trattato Die lineale Ausdehnungslehre (La teoria [...] spazio, presentata senza alcun collegamento, per esempio, con gli sviluppi della teoria delle varietà che si riallacciava a Riemann. Ecco perché Felix Christian Klein (1849-1925) ha parlato dei 'grassmanniani' come di una 'setta', dedita soltanto a ...
Leggi Tutto
curvatura
Luca Tomassini
Termine generale che indica una serie di caratteristiche quantitative (in termini di numeri, vettori, tensori) descriventi il grado al quale un determinato oggetto geometrico [...] dello spazio nel quale la superficie stessa è immersa. Si tratta dunque di una proprietà intrinseca, un’osservazione che opportunamente generalizzata sarà posta da Bernhard Riemann a fondamento della sua nuova geometria.
→ Geometria non commutativa ...
Leggi Tutto
riemanniano
〈rim–〉 agg. – Relativo al matematico ted. Bernhard Riemann 〈rìiman〉 (1826-1866): geometria r. (o di Riemann o ellittica), tipo di geometria non euclidea nella quale non esistono rette parallele e, rispetto alla geometria euclidea,...
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...