• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
179 risultati
Tutti i risultati [607]
Matematica [179]
Biografie [148]
Musica [93]
Fisica [50]
Analisi matematica [44]
Algebra [41]
Storia della matematica [39]
Fisica matematica [38]
Geometria [27]
Temi generali [26]

L'Ottocento: matematica. Il rigore in analisi

Storia della Scienza (2003)

L'Ottocento: matematica. Il rigore in analisi Umberto Botta Il rigore in analisi L'eredità di Lagrange All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] deciso raffinamento di concetti e di metodi per essere affrontate con successo. Tra Gottinga e Berlino Nel 1854 Georg Friedrich Bernhard Riemann (1826-1866), che aveva seguito i corsi di Dirichlet a Berlino e si era laureato a Gottinga con una tesi ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La grande scienza. Teoria dei numeri

Storia della Scienza (2003)

La grande scienza. Teoria dei numeri Anatolij A. Karatsuba Teoria dei numeri La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] c di Selberg non è inferiore a 1/3 (Levinson, 1974). Si può dimostrare che l'uguaglianza N0(T)=N(T) è equivalente all'ipotesi di Riemann; 5) in quasi ogni intervallo della retta critica Re(s)=1/2 della forma (t; t+h), con h=Φ(t)/log∣t∣, Φ(t)→+∞ per ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten

Storia della Scienza (2003)

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten Enrico Arbarello Geometria numerativa e invarianti di Gromov-Witten Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] genere g'. I punti di questo spazio sono le classi di isomorfismo di superfici n-puntate (C; p1,…,pn) dove C è una superficie di Riemann di genere g e i pi sono punti distinti di C. Si ricordi che due superfici n-puntate (C; p1,…,pn) e (C′; p1′,…,pn ... Leggi Tutto
CATEGORIA: GEOMETRIA

La seconda rivoluzione scientifica: matematica e logica. La scuola di geometria algebrica italiana

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La scuola di geometria algebrica italiana Alberto Conte Ciro Ciliberto La scuola di geometria algebrica italiana Gli inizi: Luigi Cremona e [...] n poli assegnati, dimostrando che r≥n−g+1, un teorema completato nel 1864 da Gustav Roch (teorema di Riemann-Roch). Infine, Riemann introduce il concetto di trasformazione birazionale tra curve di genere g e suddivide i campi di funzioni razionali su ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La grande scienza. Geometria non commutativa

Storia della Scienza (2003)

La grande scienza. Geometria non commutativa Alain Connes Geometria non commutativa Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] commutare con infinitesimi come ds, e non è perciò sorprendente che questa mancanza di commutatività permetta di calcolare, nel caso classico riemanniano, la distanza geodetica d(x,y) tra due punti. Tale distanza è data da: dove D=ds−1 e A è ... Leggi Tutto
CATEGORIA: GEOMETRIA

Hurwitz, Adolf

Enciclopedia on line

Hurwitz, Adolf Matematico tedesco (Hildesheim 1859 - Zurigo 1919), prof. (1884-92), all'univ. di Königsberg, poi, fino alla morte, al politecnico di Zurigo. Socio straniero dei Lincei (1913). A soli 17 anni, quando era [...] da un largo eclettismo, ricordiamo quelli sulle corrispondenze algebriche e il principio di corrispondenza, sulla superficie di Riemann con punti di diramazione assegnati, sugli zeri di una funzione olomorfa f(z), limite di una successione ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: LIMITE DI UNA SUCCESSIONE – SUCCESSIONE DI FUNZIONI – SUPERFICIE DI RIEMANN – FUNZIONE OLOMORFA – KÖNIGSBERG
Mostra altri risultati Nascondi altri risultati su Hurwitz, Adolf (3)
Mostra Tutti

MATEMATICA

Enciclopedia Italiana (1934)

MATEMATICA Federico Enriques Matematica, o matematiche (gr. τὰ μαϑηματικά da μάϑημα "insegnamento") significa originariamente "disciplina" o "scienza razionale". Questo significato conferirono alla [...] che lo studio delle funzioni, iniziato col sec. XIX da A.-L. Cauchy, era passato poi in Germania nelle scuole di B. Riemann e di C. Weierstrass, e che la geometria, rinnovata da Francesi ai principî del secolo, ebbe poi la sua maggior fioritura in ... Leggi Tutto
CATEGORIA: TEMI GENERALI – PSICOLOGIA COGNITIVA
TAGS: ETHICA ORDINE GEOMETRICO DEMONSTRATA – CRITICA DELLA RAGION PURA – CALCOLO DELLE PROBABILITÀ – CALCOLO DELLE VARIAZIONI – GEOMETRIA DIFFERENZIALE
Mostra altri risultati Nascondi altri risultati su MATEMATICA (14)
Mostra Tutti

Brill, Alexander Wilhelm von

Enciclopedia on line

Matematico tedesco (Darmstadt 1842 - Tubinga 1935); prof. dal 1884 al 1918 all'univ. di Tubinga, nella sua opera scientifica il B. si ricollega agli indirizzi di B. Riemann ed è, con F. Clebsch e M. Noether, [...] uno dei primi cultori della geometria delle curve e delle superfici algebriche. Classica la memoria (in collaboraz. con M. Noether) Über die algebraischen Funktionen und ihre Anwendung in der Geometrie ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: DARMSTADT – TUBINGA
Mostra altri risultati Nascondi altri risultati su Brill, Alexander Wilhelm von (1)
Mostra Tutti

Clifford, William Kingdon

Enciclopedia on line

Clifford, William Kingdon Matematico, psicologo e filosofo inglese (Exeter 1845- Madera 1879). Dal 1871 prof. all'University College di Londra. Divulgò e sviluppò le ricerche matematiche più notevoli della sua epoca: da quelle [...] un suo accenno a un possibile legame tra moto dei corpi e curvatura dello spazio (1870), che, sulla strada aperta dal Riemann, precorre le teorie di A. Einstein. Come filosofo, il C., positivista, cercò di dare un'interpretazione della cosa in sé dal ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: EVOLUZIONISMO – POSITIVISTA – MADERA – EXETER
Mostra altri risultati Nascondi altri risultati su Clifford, William Kingdon (3)
Mostra Tutti

automòrfo

Dizionario delle Scienze Fisiche (1996)

automorfo automòrfo [agg. Comp. di auto- e -morfo] [ALG] Qualifica di una proprietà associata al gruppo degli automorfismi di un insieme algebrico qualunque (gruppo, anello, ecc.). ◆ [ALG] Forma a.: [...] v. Riemann, superfici di: V 6 b. ◆ [ANM] Funzione a.: funzione analitica, di un qualunque numero di variabili, che si conserva inalterata quando si esegua sulle variabili una qualunque trasformazione appartenente a un determinato gruppo, in genere ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
1 2 3 4 5 6 7 8 ... 18
Vocabolario
riemanniano
riemanniano 〈rim–〉 agg. – Relativo al matematico ted. Bernhard Riemann 〈rìiman〉 (1826-1866): geometria r. (o di Riemann o ellittica), tipo di geometria non euclidea nella quale non esistono rette parallele e, rispetto alla geometria euclidea,...
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali