• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
179 risultati
Tutti i risultati [607]
Matematica [179]
Biografie [148]
Musica [93]
Fisica [50]
Analisi matematica [44]
Algebra [41]
Storia della matematica [39]
Fisica matematica [38]
Geometria [27]
Temi generali [26]

BURALI FORTI, Cesare

Dizionario Biografico degli Italiani (1972)

BURALI FORTI, Cesare Evandro Agazzi Nacque ad Arezzo il 13 ag. 1861 da Cosimo e da Isoletta Guiducci. Dopo aver compiuto gli studi medi nel collegio militare di Firenze, s'iscrisse nel dicembre 1879 [...] frequentò anche le lezioni di meccanica razionale, meccanica celeste e fisica matematica tenute dal Betti, amico personale del Riemann, che più volte aveva avuto ospite a Pisa e che dal grande matematico tedesco aveva tratto incitamento a dedicarsi ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: TRASFORMAZIONI DI LORENTZ – GEOMETRIA DIFFERENZIALE – AUGUST FERDINAND MÖBIUS – TEORIA DELLA RELATIVITÀ – WILLIAM ROWAN HAMILTON
Mostra altri risultati Nascondi altri risultati su BURALI FORTI, Cesare (1)
Mostra Tutti

toro

Dizionario delle Scienze Fisiche (1996)

toro tòro [Der. del lat. torus "cordone"] [ALG] Superficie spaziale generata dalla rotazione di una circonferenza c intorno a una retta a del suo piano, esterna a essa (v. fig.); si chiamano asse del [...] es. due circonferenze (come un meridiano e un parallelo). ◆ [ALG] T. bidimensionale: v. fibrati: II 569 d. ◆ [ALG] T. complesso: v. Riemann, superfici di: V 2 a. ◆ [ALG] T. massimale: v. invarianti, teoria degli: III 286 a. ◆ [ALG] T. non commutativo ... Leggi Tutto
CATEGORIA: ALGEBRA

VITALI, Giuseppe

Enciclopedia Italiana - I Appendice (1938)

VITALI, Giuseppe Giovanni Lampariello Matematico, nato a Ravenna il 26 agosto 1875, morto a Bologna il 29 febbraio 1932. Professore di analisi infinitesimale prima a Padova e poi a Bologna. Le sue più [...] ad esempio la nozione di funzione assolutamente continua. Notevole è il teorema del V. secondo cui è analitica (nel senso di Cauchy-Riemann) in un campo C la somma di una serie di funzioni della variabile complessa z, definite in C, convergente in un ... Leggi Tutto
TAGS: CONSIGLIO NAZIONALE DELLE RICERCHE – ANALISI INFINITESIMALE – CALCOLO DIFFERENZIALE – TEORIA DELLA MISURA – SPAZIO HILBERTIANO
Mostra altri risultati Nascondi altri risultati su VITALI, Giuseppe (3)
Mostra Tutti

JULIA, Gaston Maurice

Enciclopedia Italiana - IV Appendice (1979)

JULIA, Gaston Maurice Matematico francese, nato a SidiBel-Abbès (Algeria) il 3 dicembre 1893. È stato professore di analisi superiore alla Sorbona dal 1925 al 1964 e di geometria al Politecnico di Parigi [...] Hilbert. A lui si deve un nuovo metodo per risolvere equazioni funzionali basato sull'utilizzazione delle superfici di Riemann. È autore di oltre cento tra memorie e volumi, tra cui ricordiamo: Introduction mathématique aux théories quantiques (1949 ... Leggi Tutto

integrabile

Dizionario delle Scienze Fisiche (1996)

integrabile integràbile [agg. Der. del lat. integrabilis] [LSF] Che può essere integrato, sia nel signif. matematico (→ integrale), sia per significare che si tratta di cosa che può essere aggiunta o [...] esista l'integrale ∫C f dC; a seconda della natura di questo integrale si parla di funzione i. secondo Lebesgue, secondo Riemann, ecc.: v. misura e integrazione: III 3 f, 4 a. ◆ [MCC] Sistema i.: un sistema meccanico hamiltoniano tale che per esso ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – TEMI GENERALI – ANALISI MATEMATICA

BERTINI, Eugenio

Dizionario Biografico degli Italiani (1967)

BERTINI, Eugenio ** Nacque a Forlì l'8 nov. 1846 da Vincenzo, tipografo,e da Agata Bezzi. Si iscrisse nel 1863 all'università di Bologna, grazie alla Congregazione di carità di Forlì, con l'intenzione [...] Atti d., Accad. dei Lincei, Rendic. classe scienze fis. mat. nat., s. 9, II, 2 (1885-86), pp. 208-211; Sulle superfici di Riemann, in Atti d. Accad. dei Lincei, Rendic. classe scienze fis. mat. nat., t. 5, III, 1 (1894), pp. 106-110; Sui sistemi di ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: GEOMETRIA DESCRITTIVA – GEOMETRIA ALGEBRICA – SPAZIO LINEARE – IPERSPAZIO – MATEMATICA
Mostra altri risultati Nascondi altri risultati su BERTINI, Eugenio (3)
Mostra Tutti

Liouville Joseph

Dizionario delle Scienze Fisiche (1996)

Liouville Joseph Liouville 〈liuvìl〉 Joseph [STF] (Saint-Omer, Pas de Calais, 1809 - Parigi 1882) Prof. di matematica nell'École polytecnique (1831) e nel Collège de France (1851), poi di meccanica alla [...] II 839 c). ◆ [ANM] Equazione di L.-von Neumann: v. termalizzazione in meccanica quantistica: VI 140 d. ◆ [ANM] Integrale di L.-Riemann: v. trasformazione integrale: VI 297 b. ◆ [ANM] Proprietà di L.: v. potenziale, teoria del: IV 570 a. ◆ [ALG] [ANM ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su Liouville Joseph (3)
Mostra Tutti

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica Umberto Bottazzini Filosofia e pratica matematica Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] di una variabile. L'obiettivo è di fondare la teoria di quelle funzioni, che "è uno dei principali risultati di Riemann, da un punto di vista semplice e al tempo stesso rigoroso e completamente generale". Il loro lavoro culmina nella nozione di ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

analitico

Enciclopedia on line

Filosofia Nella logica kantiana, giudizio a. è quello nel quale il concetto del predicato è implicitamente contenuto nel concetto del soggetto, e in cui quindi basta analizzare il soggetto per ricavarne [...] quando z0 è interno ad A. Tale limite esiste se e soltanto se le funzioni u e v soddisfano alle condizioni di Cauchy-Riemann, o condizioni di monogeneità o di olomorfia: Da ciò segue che la parte reale, u, e il coefficiente dell’immaginario, v, di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – DOTTRINE TEORIE E CONCETTI
TAGS: FUNZIONI DI VARIABILE COMPLESSA – CONDIZIONI DI CAUCHY-RIEMANN – PRINCIPIO D’IDENTITÀ – FUNZIONI ANALITICHE – FUNZIONE DERIVABILE
Mostra altri risultati Nascondi altri risultati su analitico (3)
Mostra Tutti

DE RHAM, Georges

Enciclopedia Italiana - IV Appendice (1978)

Matematico svizzero, nato a Roche il 10 settembre 1903. Dal 1936 è professore di matematica nelle università di Losanna e Ginevra; dal 1962 socio straniero dell'Accademia dei Lincei. Fondamentali le sue [...] progresso della geometria differenziale dal punto di vista globale, mettendo in luce nuove proprietà degli spazi di Riemann, e alla teoria delle equazioni differenziali alle derivate parziali. Tra le opere: Variétés differentiables. Formes, courants ... Leggi Tutto
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – GEOMETRIA DIFFERENZIALE – ACCADEMIA DEI LINCEI – FORMA DIFFERENZIALE – GRUPPI DI OMOTOPIA
Mostra altri risultati Nascondi altri risultati su DE RHAM, Georges (1)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 10 ... 18
Vocabolario
riemanniano
riemanniano 〈rim–〉 agg. – Relativo al matematico ted. Bernhard Riemann 〈rìiman〉 (1826-1866): geometria r. (o di Riemann o ellittica), tipo di geometria non euclidea nella quale non esistono rette parallele e, rispetto alla geometria euclidea,...
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali