• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
27 risultati
Tutti i risultati [607]
Geometria [27]
Matematica [179]
Biografie [148]
Musica [93]
Fisica [50]
Analisi matematica [44]
Algebra [41]
Storia della matematica [39]
Fisica matematica [38]
Temi generali [26]

Geometria algebrica

Enciclopedia del Novecento II Supplemento (1998)

GEOMETRIA ALGEBRICA Ciro Ciliberto Igor R. Shafarevich Lo sviluppo delle idee di Ciro Ciliberto Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] di grado d e genere g, si ha, come conseguenza del teorema di Riemann-Roch, che PX (n) = nd - g + 1. Fu sorprendente uno spazio proiettivo PN. Qui si ha N = l (nK) - 1 e dal teorema di Riemann-Roch segue facilmente che l (nk) = (2 n - 1) (g - 1) se n ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – ACCADEMIA NAZIONALE DELLE SCIENZE DETTA DEI XL – EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – SCUOLA ITALIANA DI GEOMETRIA ALGEBRICA – CARATTERISTICA DI EULERO-POINCARÉ
Mostra altri risultati Nascondi altri risultati su Geometria algebrica (2)
Mostra Tutti

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea

Storia della Scienza (2003)

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea Jeremy Gray Dalla geometria proiettiva alla geometria euclidea La geometria proiettiva La carriera del matematico francese [...] che una curva piana può avere, ignorando l'idea di Riemann di studiare la curva dal punto di vista intrinseco e che lo spazio delle funzioni a un solo valore su una superficie di Riemann ha dimensione m−p+1+r, dove r è la dimensione dello spazio ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica Jeremy Gray Geometria algebrica Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] Ciò è possibile, e fu così che il matematico tedesco Heinrich W.E. Jung poté dimostrare, nel 1905, il teorema di Riemann-Roch per le superfici. Con Jung si assiste a un progresso rispetto alla scuola italiana: per la prima volta sono infatti ammessi ... Leggi Tutto
CATEGORIA: GEOMETRIA – STATISTICA E CALCOLO DELLE PROBABILITA

L'Ottocento: matematica. La geometria non euclidea

Storia della Scienza (2003)

L'Ottocento: matematica. La geometria non euclidea Rossana Tazzioli La geometria non euclidea Alla base dei suoi Elementi Euclide aveva posto un certo numero di definizioni (o 'termini') e di assiomi [...] studio dei fondamenti della geometria. Tale oscurità non era stata superata 'da Euclide fino a Legendre'. Nella lezione di Riemann una grandezza pluriestesa, che ha inizialmente il significato di un generico insieme di punti, viene poi dotata di una ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. I fondamenti della geometria

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. I fondamenti della geometria Umberto Bottazzini I fondamenti della geometria Verso la metà del XIX sec. Georg Friedrich Bernhard Riemann (1826-1866) [...] fatti di esperienza, che non sono necessari ma "possiedono solo una certezza empirica, sono ipotesi". Le 'ipotesi' di Riemann non costituiscono dunque un momento di una ricerca sui fondamenti assiomatici della geometria, ma il tentativo di stabilire ... Leggi Tutto
CATEGORIA: GEOMETRIA

geometria

Enciclopedia on line

In senso ampio e generico, ramo della matematica che studia lo spazio e le figure spaziali. Cenni storiciL’antichità - L’origine della g. è legata a concreti problemi di misurazione del terreno (nacque [...] o di Lobačevskij, nella quale si postula che da ogni punto escono due parallele a una retta data, e la g. ellittica o di Riemann, nella quale si postula la non esistenza di parallele. Come caso limite di entrambe si ha la g. parabolica, che è la g ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: OPERAZIONI DI PROIEZIONE E SEZIONE – TEORIA QUANTISTICA DEI CAMPI – TEORIA DELLE SUPERSTRINGHE – POSTULATO DELLE PARALLELE – METODO DELL’ASSONOMETRIA
Mostra altri risultati Nascondi altri risultati su geometria (13)
Mostra Tutti

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten

Storia della Scienza (2003)

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten Enrico Arbarello Geometria numerativa e invarianti di Gromov-Witten Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] genere g'. I punti di questo spazio sono le classi di isomorfismo di superfici n-puntate (C; p1,…,pn) dove C è una superficie di Riemann di genere g e i pi sono punti distinti di C. Si ricordi che due superfici n-puntate (C; p1,…,pn) e (C′; p1′,…,pn ... Leggi Tutto
CATEGORIA: GEOMETRIA

La seconda rivoluzione scientifica: matematica e logica. La scuola di geometria algebrica italiana

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La scuola di geometria algebrica italiana Alberto Conte Ciro Ciliberto La scuola di geometria algebrica italiana Gli inizi: Luigi Cremona e [...] n poli assegnati, dimostrando che r≥n−g+1, un teorema completato nel 1864 da Gustav Roch (teorema di Riemann-Roch). Infine, Riemann introduce il concetto di trasformazione birazionale tra curve di genere g e suddivide i campi di funzioni razionali su ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La grande scienza. Geometria non commutativa

Storia della Scienza (2003)

La grande scienza. Geometria non commutativa Alain Connes Geometria non commutativa Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] commutare con infinitesimi come ds, e non è perciò sorprendente che questa mancanza di commutatività permetta di calcolare, nel caso classico riemanniano, la distanza geodetica d(x,y) tra due punti. Tale distanza è data da: dove D=ds−1 e A è ... Leggi Tutto
CATEGORIA: GEOMETRIA

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] geometria intrinseca è in quasi tutti i casi non euclidea. Pertanto, nell'intorno di un suo qualsiasi punto una superficie di Riemann a curvatura costante è simile localmente a una porzione di sfera, a una porzione del piano euclideo o di uno spazio ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA
1 2 3
Vocabolario
riemanniano
riemanniano 〈rim–〉 agg. – Relativo al matematico ted. Bernhard Riemann 〈rìiman〉 (1826-1866): geometria r. (o di Riemann o ellittica), tipo di geometria non euclidea nella quale non esistono rette parallele e, rispetto alla geometria euclidea,...
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali