• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
38 risultati
Tutti i risultati [607]
Fisica matematica [38]
Matematica [179]
Biografie [148]
Musica [93]
Fisica [50]
Analisi matematica [44]
Algebra [41]
Storia della matematica [39]
Geometria [27]
Temi generali [26]

Riemann Bernhard

Dizionario delle Scienze Fisiche (1996)

Riemann Bernhard Riemann 〈rìiman〉 Bernhard [STF] (Breselenz 1826 - Intra 1866) Prof. di matematica nell'univ. di Gottinga (1857). ◆ [ALG] Formula di R.-Hurwitz: v. Riemann, superfici di: V 4 b. ◆ [ALG] [...] superfici di: V 4 c. ◆ [ALG] Teorema di R.-Lebesgue: v. trasformazione integrale: VI 299 c. ◆ [ALG] Teorema di R.-Roch: v. superfici di Riemann: V 5 c. ◆ [MCF] Variabili di R.: v. onde nei gas: IV 289 c. ◆ [MCC] Varietà di R.: v. varietà riemanniane. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA QUANTISTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: METRICA RIEMANNIANA – VARIETÀ COMPLESSA – MATEMATICA – GOTTINGA – FIBRATI
Mostra altri risultati Nascondi altri risultati su Riemann Bernhard (5)
Mostra Tutti

riemanniano

Dizionario delle Scienze Fisiche (1996)

riemanniano riemanniano 〈riimanniano〉 [agg. e s.m. Der. del nome di B. Riemann] [ALG] R. di una varietà algebrica: varietà reale i cui punti siano in corrispondenza biunivoca e bicontinua con i punti [...] =Σij=rij=1 aij(x₁, x₂, ..., xr)dxidxj, i cui coefficienti aij sono convenienti funzioni del punto (x₁, ..., xr). Con Riemann, si può assumere la grandezza ds2 ora scritta come quadrato della distanza tra due punti infinitamente vicini (x₁, ..., xr) e ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – ALGEBRA – EPISTEMOLOGIA – METAFISICA

ramificazione

Dizionario delle Scienze Fisiche (1996)

ramificazione ramificazióne [Der. del lat. ramificatio -onis (→ ramificato)] [ALG] Nozione che interviene nella topologia delle superfici di Riemann: v. Riemann, superfici di: V 4 b, anche per l'indice [...] di r., l'ordine totale di r. e l'ordine di ramificazione. ◆ [FSN] Il processo di decadimento di un radionuclide quando può dar luogo a diversi prodotti, detti anche frazioni di r., per quanto propr. la ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – FISICA NUCLEARE – ALGEBRA

Roch Gustav

Dizionario delle Scienze Fisiche (1996)

Roch Gustav Roch 〈ròk〉 Gustav [STF] (Dresda 1839 - Venezia 1866) Prof. di matematica nell'univ. di Halle (1863). ◆ [ALG] Teorema di Riemann-R.: v. superfici di Riemann: V 5 c. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA

specialita

Dizionario delle Scienze Fisiche (1996)

specialita specialità [Der. del lat. specialitas -atis, da specialis "speciale"] [LSF] L'esser speciale; natura particolare, carattere singolare. ◆ [ALG] Indice di s.: v. Riemann, superfici di: V 5 c. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – TEMI GENERALI – ALGEBRA

Hurwitz Adolf

Dizionario delle Scienze Fisiche (1996)

Hurwitz Adolf Hurwitz 〈hùrviz〉 Adolf [STF] (Hildesheim 1859 - Zurigo 1919) Prof. di matematica nell'univ. di Königsberg e poi (1893) nel politecnico di Zurigo; socio straniero dei Lincei (1913). ◆ [ALG] [...] -H.: connette il genere e altri invarianti di una superficie di Riemann: v. Riemann, superfici di: V 4 b. ◆ [ALG] Polinomi di H.: polinomi i cui zeri (reali o complessi) hanno tutti parte reale negativa. I polinomi a coefficienti reali, x2+bx+c ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA
TAGS: KÖNIGSBERG – HILDESHEIM – MATEMATICA – POLINOMIO – ZURIGO
Mostra altri risultati Nascondi altri risultati su Hurwitz Adolf (3)
Mostra Tutti

divisore

Dizionario delle Scienze Fisiche (1996)

divisore divisóre [s.m. e agg. Der. del lat. divisor -oris, dal part. pass. di dividere e quindi "che fa una divisione"] [ALG] (a) Il secondo termine dell'operazione di divisione. (b) Con signif. particolare, [...] elettriche: IV 23 b. ◆ [FTC] [ELT] D. di tensione resistivo e capacitivo: partitore di tensione realizzato combinando resistori e condensatori: v. isolamenti ad alta tensione: III 330 e, f. ◆ [ALG] D. principale: v. Riemann, superfici di: V 5 a. ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – FISICA TECNICA – OTTICA – TEMI GENERALI – ALGEBRA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA

zeta

Dizionario delle Scienze Fisiche (1996)

zeta zèta [Der. del greco zèta "zeta"] [LSF] Scrittura per esteso dell'ultima lettera dell'alfab. it. (z, Z). ◆ [FPL] Z. pinch: lo stesso che strizione longitudinale di un plasma per la fusione termonucleare: [...] v. confinamento magnetico: I 711 c. ◆ [ANM] Funzione z. di Riemann: è definita dalla serie Σn=∞n=1(1/nz): v. funzioni di variabile complessa: II 781 e. ... Leggi Tutto
CATEGORIA: FISICA DEI PLASMI – FISICA MATEMATICA – TEMI GENERALI – ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su zeta (1)
Mostra Tutti

Z

Dizionario delle Scienze Fisiche (1996)

Z Z 〈zèta〉 [Forma maiusc. della lettera z] [ALG] Z è il simb. dell'anello dei numeri interi relativi. ◆ [FAT] Simb. del numero atomico di un elemento. ◆ [FSN] Simb. (anche Z0) del bosone intermedio che [...] neutra: v. Z, particella. ◆ [MTR] Simb. del pref. metrologico SI zetta- (o zepta-). ◆ [ANM] Z di Riemann: lo stesso che funzione zeta (←) di Riemann. ◆ [FSD] Centro Z: tipo di centro di colore, indicato anche come centro Fz: v. centri di colore: I ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA NUCLEARE – FISICA TECNICA – METROLOGIA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA

Cauchy Augustin-Louis

Dizionario delle Scienze Fisiche (1996)

Cauchy Augustin-Louis Cauchy ⟨koshì⟩ Augustin-Louis  (Parigi 1789 - Sceaux, Seine, 1857) Ingegnere, poi (1815) prof. nella Ècole Polytechnique, alla Sorbona e al Collège de France; non accettando il [...] di analiticità di una funzione di variabile complessa, soluzione di un sistema di equazioni differenziali dette equazioni di C.-Riemann: v. funzioni di variabile complessa: II 776 f, 777 a. ◆ Condizioni di C.: le condizioni necessarie affinché la for ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – RELATIVITA E GRAVITAZIONE – STORIA DELLA FISICA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA
TAGS: DISTRIBUZIONE DI PROBABILITÀ – EQUAZIONE DIFFERENZIALE – DENSITÀ DI PROBABILITÀ – INDICE DI RIFRAZIONE – ÈCOLE POLYTECHNIQUE
Mostra altri risultati Nascondi altri risultati su Cauchy Augustin-Louis (3)
Mostra Tutti
1 2 3 4
Vocabolario
riemanniano
riemanniano 〈rim–〉 agg. – Relativo al matematico ted. Bernhard Riemann 〈rìiman〉 (1826-1866): geometria r. (o di Riemann o ellittica), tipo di geometria non euclidea nella quale non esistono rette parallele e, rispetto alla geometria euclidea,...
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali