Musicologo (Ratisbona 1876 - Colonia 1957). Studiò con H. Riemann e H. Kretzschmar. Professore a Marburgo e poi a Bonn, pubblicò volumi su Mozart, Beethoven, ecc.; curò l'edizione completa delle lettere [...] di Mozart e della sua famiglia (5 voll., 1914) ...
Leggi Tutto
GEOMETRIA ALGEBRICA
Ciro Ciliberto
Igor R. Shafarevich
Lo sviluppo delle idee di Ciro Ciliberto
Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] di grado d e genere g, si ha, come conseguenza del teorema di Riemann-Roch, che PX (n) = nd - g + 1. Fu sorprendente uno spazio proiettivo PN. Qui si ha N = l (nK) - 1 e dal teorema di Riemann-Roch segue facilmente che l (nk) = (2 n - 1) (g - 1) se n ...
Leggi Tutto
L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea
Jeremy Gray
Dalla geometria proiettiva alla geometria euclidea
La geometria proiettiva
La carriera del matematico francese [...] che una curva piana può avere, ignorando l'idea di Riemann di studiare la curva dal punto di vista intrinseco e che lo spazio delle funzioni a un solo valore su una superficie di Riemann ha dimensione m−p+1+r, dove r è la dimensione dello spazio ...
Leggi Tutto
geometria riemanniana
geometria riemanniana geometria differenziale secondo l’impostazione di B. Riemann (si vedano: → Riemann, spazio di, detto anche varietà riemanniana; → Riemann, superficie di). [...] La stessa locuzione è a volte usata per riferirsi a una delle geometrie non euclidee, la → geometria ellittica, detta anche appunto geometria di Riemann. ...
Leggi Tutto
riemannianoriemanniano 〈riimanniano〉 [agg. e s.m. Der. del nome di B. Riemann] [ALG] R. di una varietà algebrica: varietà reale i cui punti siano in corrispondenza biunivoca e bicontinua con i punti [...] =Σij=rij=1 aij(x₁, x₂, ..., xr)dxidxj, i cui coefficienti aij sono convenienti funzioni del punto (x₁, ..., xr). Con Riemann, si può assumere la grandezza ds2 ora scritta come quadrato della distanza tra due punti infinitamente vicini (x₁, ..., xr) e ...
Leggi Tutto
È dal 1920 il successore di Hugo Riemann nella cattedra di musicologia all'università di Lipsia. Nato a Stoccarda il 25 marzo del 1871, egli fu alunno, prima che del conservatorio della sua città natale, [...] del proprio padre Johann Joseph, contrabbassista e compositore, nato in Boemia, a Kochovice il 21 settembre 1832, e morto a Stoccarda il 1° aprile 1915. L'A., che è oggi uno dei più rinomati musicologi ...
Leggi Tutto
Numeri, teoria dei
LLarry Joel Goldstein
di Larry Joel Goldstein
SOMMARIO: 1. Introduzione: a) argomenti fondamentali; b) la teoria dei numeri nel XVII e XVIII secolo; c) Gauss. □ 2. Teoria algebrica [...] esiste un'equazione funzionale che collega Z(V, q-d, t-1) e Z(V, t) (o ζ(V, d−s) e ζ(V, s)).
Congettura 3 (ipotesi di Riemann): ∣αli∣=ql/2. In altre parole, gli zeri di ζ(V, s) stanno sulle linee Re(s)=1/2, 3/2, 5/2, ..., (2d−1)/2.
Dalla formula ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica
Jeremy Gray
Geometria algebrica
Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] Ciò è possibile, e fu così che il matematico tedesco Heinrich W.E. Jung poté dimostrare, nel 1905, il teorema di Riemann-Roch per le superfici. Con Jung si assiste a un progresso rispetto alla scuola italiana: per la prima volta sono infatti ammessi ...
Leggi Tutto
riemannianoriemanniano aggettivo utilizzato per indicare alcuni degli elementi matematici che fanno riferimento all’ampia produzione scientifica di B. Riemann. In particolare è utilizzato per indicare [...] , spazio di), la metrica in esse definita (→ Riemann, metrica di), il corrispondente tensore (→ Riemann, tensore di), la geometria riemanniana (→ geometria non euclidea; → geometria ellittica) di cui la sfera riemanniana costituisce un modello. Altri ...
Leggi Tutto
riemanniano
〈rim–〉 agg. – Relativo al matematico ted. Bernhard Riemann 〈rìiman〉 (1826-1866): geometria r. (o di Riemann o ellittica), tipo di geometria non euclidea nella quale non esistono rette parallele e, rispetto alla geometria euclidea,...
spazio
spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...