• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
atlante
il chiasmo
lingua italiana
134 risultati
Tutti i risultati [2892]
Matematica [134]
Diritto [640]
Medicina [382]
Biologia [248]
Temi generali [249]
Biografie [248]
Arti visive [226]
Economia [179]
Archeologia [147]
Storia [140]

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] e L (E, F) è sempre uno spazio di Banach. b) Spettro e calcolo funzionale Sia ora E ≠ {0} uno spazio di Banach complesso (K = C) e T f e g coincidono. L'‛algebra quoziente' (dopo questa relazione di equivalenza) è ancora indicata con F (T). Un ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

La grande scienza. Combinatoria

Storia della Scienza (2003)

La grande scienza. Combinatoria Peter J. Cameron Combinatoria Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] dei Matematici nel 1998. Lavora in combinatoria pura e in analisi funzionale, e ha la capacità di unire le due aree (ha unico teorema: 'non vi sono anticatene di grafi finiti nella relazione di minore', ovvero, con altre parole, una classe di grafi ... Leggi Tutto
CATEGORIA: ALGEBRA

Nodi e fisica

Enciclopedia del Novecento II Supplemento (1998)

Nodi e fisica Louis H. Kauffman Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] altro. Il lettore potrebbe trovare sorprendente che esista una qualche relazione tra la teoria dei nodi e la fisica: ciò che per condurre a effettive teorie matematiche per l'integrale funzionale e a una nuova fondazione della teoria quantistica dei ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA QUANTISTICA – GEOMETRIA
TAGS: TEORIA QUANTISTICA DEI CAMPI – FILOSOFIA DELLA MATEMATICA – EQUAZIONE DI SCHRÖDINGER – CALCOLO DELLE VARIAZIONI – RELAZIONE DI EQUIVALENZA

Scienza greco-romana. Archimede

Storia della Scienza (2001)

Scienza greco-romana. Archimede Reviel Netz Archimede Archimede è l’unico dei matematici greci di cui abbiamo notizie storiche; questa eccezionalità è dovuta in parte ai risultati da lui ottenuti, [...] curva complicata. Poiché i due movimenti devono essere in una data relazione, in questo caso il tempo è un fattore che entra in di un successo, un’operazione di grande effetto e funzionale proprio per la sua oscurità, che rende difficile immaginare ... Leggi Tutto
CATEGORIA: BIOGRAFIE – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica Solomon Feferman Le scuole di filosofia della matematica I più importanti programmi di fondazione della [...] è considerata come determinata in maniera vero-funzionale. Ciò potrebbe essere considerata un'accettazione successione ⟨X0,…,Xn,…⟩ di sottoinsiemi di N, ed è data da un'unica relazione binaria R tale che x∈Xn⇔R(x,n). Allora, l'unione degli insiemi ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

Econometria

Enciclopedia del Novecento I Supplemento (1989)

Econometria Luigi Pasinetti Guido Gambetta di Luigi Pasinetti, Guido Gambetta Econometria sommario: 1. Definizione. 2. I precedenti storici. 3. La nascita dell'econometria. 4. I maggiori centri econometrici. [...] di equilibrio del mercato è che la domanda eguagli l'offerta. Il modello econometrico specifica una forma funzionale per tali relazioni (per esempio la forma lineare) e definisce due variabili probabilistiche (u1t e u2t) che riassumono gli effetti ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – METODI TEORIE E PROVVEDIMENTI
TAGS: FUNZIONE DI DENSITÀ DI PROBABILITÀ – DISTRIBUZIONE DI PROBABILITÀ – METODO DEI MINIMI QUADRATI – LONDON SCHOOL OF ECONOMICS – ELABORATORE ELETTRONICO
Mostra altri risultati Nascondi altri risultati su Econometria (7)
Mostra Tutti

Stocastica

Enciclopedia del Novecento (1984)

MMark Kac di Mark Kac SOMMARIO: 1. Preliminari. □ 2. Alcune sottigliezze matematiche. □ 3. Alcune classi generali di processi stocastici con esempi: a) processi di Markov con spazio degli stati finito [...] ) (1) di x(t1), x(t2), ..., x(tn) mediante la relazione dove P (probabilità) indica la misura μ su Ω, cioè: Secondo questa un processo gaussiano stazionario la cui covarianza è un funzionale semplice di f. (Per ulteriori dettagli, si veda ... Leggi Tutto
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – COEFFICIENTE DI CORRELAZIONE – GENETICA DELLE POPOLAZIONI – OSSERVAZIONE SPERIMENTALE – EQUAZIONE DI SCHRÖDINGER
Mostra altri risultati Nascondi altri risultati su Stocastica (2)
Mostra Tutti

Numeri, teoria dei

Enciclopedia della Scienza e della Tecnica (2007)

Numeri, teoria dei Larry Joel Goldstein La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri …, −4, −3, −2, [...] ] R(s)=R(1−s). L'espressione [27] è nota come l'equazione funzionale di ζ(s). Essa implica molte delle più profonde proprietà della funzione zeta. Dalla della distribuzione dei primi non è la sola relazione tra teoria dei numeri e funzioni di una ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – DOMINIO A FATTORIZZAZIONE UNICA – LEGGE DI RECIPROCITÀ QUADRATICA – CHARLES DE LA VALLÉE POUSSIN – TEOREMA DI KRONECKER-WEBER
Mostra altri risultati Nascondi altri risultati su Numeri, teoria dei (4)
Mostra Tutti

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten

Storia della Scienza (2003)

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten Enrico Arbarello Geometria numerativa e invarianti di Gromov-Witten Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] V, di grado k si ha: [16]  ∫Wφ=∫VωW⋀φ. Lo spazio dei funzionali (complessi) su Hk(V) prende il nome di k-esimo spazio di omologia di i cui diagrammi duali sono raffigurati nella fig. 16. Le relazioni [46] in questo caso si leggono nel modo seguente: ... Leggi Tutto
CATEGORIA: GEOMETRIA

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] teorema e di dimostrazione. Si definiscono i quantificatori e si stabiliscono le loro proprietà. Si introducono le relazioni e i simboli funzionali. Il secondo capitolo dal titolo Théorie des ensembles fornisce effettivamente il quadro organico della ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA
1 2 3 4 5 6 7 8 ... 14
Vocabolario
struttura
struttura s. f. [dal lat. structura, der. di struĕre «costruire, ammassare», part. pass. structus]. – In senso ampio, la costituzione e la distribuzione degli elementi che, in rapporto di correlazione e d’interdipendenza funzionale, formano...
indipendènza
indipendenza indipendènza s. f. [der. di indipendente]. – 1. Condizione di chi o di ciò che è indipendente, riferito sia a stato o nazione, sia a persona, sia a cose, fatti, ecc.: i. politica, economica, amministrativa; conquistare, perdere,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali