La civilta islamica: antiche e nuove tradizioni in matematica. Geometria pratica
Hélène Bellosta
Geometria pratica
Nella classificazione delle scienze di al-Fārābī figura la categoria dei 'procedimenti [...] o l'altezza, del lato data l'area, ecc.), precisando inoltre che, se il lato del triangolo equilatero ha per misura un numero razionale, l'altezza e l'area sono numeri irrazionali. Ciò offre inoltre a questi due autori l'occasione di mostrare la loro ...
Leggi Tutto
Scienza greco-romana. La scienza greca e l'Oriente
André Pichot
La scienza greca e l'Oriente
La scienza e la filosofia sono state a lungo considerate il frutto del 'miracolo greco', un frutto incomparabile [...] essere messo in rapporto con la democrazia greca. È probabile infatti che nella democrazia la necessità di elaborare razionalmente la propria posizione sociale all'interno di un ordine politico autonomo abbia indotto gli uomini a vedere il mondo ...
Leggi Tutto
L'Eta dei Lumi: matematica. Geometria analitica, delle curve e delle superfici. Il problema delle parallele
Peter Schreiber
Geometria analitica, delle curve e delle superfici. Il problema delle parallele
A [...] modo concreto e molto espressivo con un filo) si può tagliare un angolo o arco di cerchio in un qualunque rapporto razionale, si può quadrare un settore circolare e anche rettificare l'evolvente stessa. Ma in generale, per quanto riguarda l'interesse ...
Leggi Tutto
Analisi matematica
Jean A. Dieudonné
Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] U) di tutti i sottospazi N(μ,U) per μ≠λ è invertibile, mentre la sua restrizione a N(λ,U) è nilpotente. Per la funzione razionale di λ∈ℂ, a valori nell'algebra di Banach End(E) di dimensione n2, si può scrivere
[12] formula
dove λj (con 1≤j≤r) sono ...
Leggi Tutto
Caos
Robert L. Devaney
Introduzione storica
Secondo l'accezione più comune, il termine ‛caos' significa totale annientamento dell'ordine o assenza di qualsiasi struttura. Analogamente, in matematica, [...] non vi è tuttavia alcuna ambiguità associata all'itinerario di tali numeri. Per esempio:
e
cioè per l'itinerario di un razionale diadico si sceglie sempre la successione che termina in una coda di 0.
Di fatto, ogni successione s0s1s2... di 0 e ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri
Günther Frei
Teoria analitica dei numeri
La teoria analitica dei numeri non è una teoria matematica ben definita, [...] p−s, che si può esprimere come prodotto esteso ai propri zeri:
dove b1,…,bn−1 sono le radici di un'equazione algebrica a coefficenti razionali zn−11s1zn−21…1sn−150 e z5u−15ps. Gli zeri r di Z(s) sono dati da pr5bn, per n51,…,n21, ossia:
L'ipotesi ...
Leggi Tutto
Serie storiche, analisi delle
Franco Giusti
Finalità
Una serie storica è un insieme finito cronologicamente ordinato di osservazioni x₁, x₂, x₃,..., xT relative a un carattere X, generalmente equidistanti, [...] , p. 415).
Se un processo ARMA è stazionario e invertibile, la sua valutazione si ottiene con procedure statistiche efficienti. Un metodo razionale è quello suggerito da G.E.P. Box e G.M. Jenkins (v., 1970), articolato in tre fasi: 1) identificazione ...
Leggi Tutto
Il Rinascimento. Verso una nuova matematica
Enrico Giusti
Paolo Freguglia
Pier Daniele Napolitani
Pierre Souffrin
Verso una nuova matematica
Introduzione
di Enrico Giusti
A chi si volga alla matematica [...] del 1575. La traduzione in francese steviniana, se così si vuol chiamare, risulta essere piuttosto una ricostruzione razionale del testo diofanteo. Stevin infatti espone con il suo metodo e il suo simbolismo, introduce varianti tecniche attraverso ...
Leggi Tutto
La scienza bizantina e latina: la nascita di una scienza europea. Le discipline matematiche
Menso Folkerts
Richard P. Lorch
Anne Tihon
Le discipline matematiche
La matematica nell'Europa latina
di [...] è [l'operazione] attraverso la quale uno dei composti essendo scartato, l'altro rimane. Quello che riguarda i rapporti razionali [vale a dire numeri interi] è facile. Quello che riguarda i rapporti irrazionali [numeri non interi] è difficile, non ...
Leggi Tutto
La grande scienza. Cronologia scientifica: 1951-1960
1951-1960
1951
Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] detta β la sua misura di irrazionalità, definita come l'estremo superiore dei numeri reali b tali che ∣α−a/q∣⟨q−b per infiniti razionali a/q, si ha β=2. Ciò risolve un classico problema risalente a Liouville, che aveva ottenuto β≤n, dove n è il grado ...
Leggi Tutto
razionale1
razionale1 agg. [dal lat. rationalis, der. di ratio -onis «ragione»]. – 1. a. Che è fornito, che è dotato di ragione: anima, creatura r.; molti [animali], quasi come razionali ... la notte alle lor case senza alcuno correggimento...
razionale2
razionale2 s. m. [dal lat. rationalis «razionale», der. di ratio -onis «ragione, ragionamento»]. – 1. Nell’Antico Testamento, razionale o r. del giudizio (in latino rationale, in greco λογεῖον, in ebraico ḥōshen), rettangolo di...