• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
vocabolario
58 risultati
Tutti i risultati [105]
Matematica [58]
Algebra [29]
Storia della matematica [15]
Analisi matematica [15]
Temi generali [13]
Fisica matematica [14]
Fisica [14]
Statistica e calcolo delle probabilita [6]
Ingegneria [5]
Storia della fisica [5]

La civiltà islamica: antiche e nuove tradizioni in matematica. La tradizione araba del Libro X degli Elementi

Storia della Scienza (2002)

La civilta islamica: antiche e nuove tradizioni in matematica. La tradizione araba del Libro X degli Elementi Marouane Ben Miled La tradizione araba del Libro X degli Elementi La storia delle letture [...] '. Vengono poi forniti gli algoritmi per le quattro operazioni di base sulle quantità composte incognite e per l'estrazione della radice quadrata (dove il polinomio sia un quadrato). Parimenti, sfruttando l'analogia introdotta, vengono presentati gli ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

Numeri, teoria dei

Enciclopedia della Scienza e della Tecnica (2007)

Numeri, teoria dei Larry Joel Goldstein La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri …, −4, −3, −2, [...] L'intero n è detto il grado di F. Esempi di corpi di numeri algebrici sono i seguenti: Corpi quadratici. Sia d un intero non divisibile per il quadrato di qualunque intero maggiore di 1. Allora α=√d è radice del polinomio irriducibile f(x)=x2−d. Il ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – DOMINIO A FATTORIZZAZIONE UNICA – LEGGE DI RECIPROCITÀ QUADRATICA – CHARLES DE LA VALLÉE POUSSIN – TEOREMA DI KRONECKER-WEBER
Mostra altri risultati Nascondi altri risultati su Numeri, teoria dei (4)
Mostra Tutti

L'Età dei Lumi: matematica. Le equazioni differenziali

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Le equazioni differenziali Silvia Mazzone Clara Silvia Roero Le equazioni differenziali E con la nascita del calcolo infinitesimale di Newton e di Leibniz, nella seconda [...] +Cq2+...+Lqn=0; pertanto, se q è una radice dell'equazione caratteristica, allora y=eqx è una soluzione a considerare casi particolari in cui S è un polinomio. Va appunto a Laplace il merito di aver attirato l'attenzione dei matematici sull'equazione ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. La teoria dei numeri

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. La teoria dei numeri Günther Frei La teoria dei numeri La teoria dei numeri (o aritmetica) tratta delle proprietà dei numeri. Lungo tutta la sua storia, un tema dominante [...] studi compiuti da Descartes nel suo libro La géométrie (1637), secondo il quale un polinomio di grado n a coefficienti interi o razionali possiede al più n radici distinte. Il criterio di Euler Proseguendo i suoi studi sulle estensioni del teorema ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – ARITMETICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri Günther Frei Teoria analitica dei numeri La teoria analitica dei numeri non è una teoria matematica ben definita, [...] -1. Essa equivale anche ad affermare che le radici di R(u)=0 si trovano sul cerchio ∣u di funzioni di congruenza , dove M è un polinomio in Se χ non è il carattere principale c0 allora L(s,χ) è un polinomio in u=p−s di grado inferiore al grado di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. Matematica pura e applicata nel XVIII secolo

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. Matematica pura e applicata nel XVIII secolo Ivor Grattan-Guinness Matematica pura e applicata nel XVIII secolo Nel presente volume la determinazione cronologica 'Settecento' [...] delle equazioni, dove furono fatti sforzi per provare il teorema fondamentale secondo cui un polinomio di grado ennesimo aveva n radici, comprese le ripetizioni. Tuttavia, la manipolazione dei numeri complessi poteva provocare qualche fastidio ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Algebra

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Algebra Claudio Procesi Algebra Per comprendere la storia dell'algebra del XX sec. è necessario fare un breve quadro dello sviluppo della disciplina [...] dell'eliminazione). L'esempio classico è il risultante di Sylvester che è un polinomio nei coefficienti di due polinomi dati (in una variabile) e che svanisce quando i due polinomi hanno una radice in comune. In questo caso il problema è costruire ... Leggi Tutto
CATEGORIA: ALGEBRA

teorema fondamentale dell'algebra

Enciclopedia della Scienza e della Tecnica (2008)

teorema fondamentale dell’algebra Luca Tomassini Teorema che stabilisce, per ogni polinomio a coefficienti complessi, l’esistenza di almeno una radice nel campo dei numeri complessi. Più precisamente, [...] i≠j, è chiaro cosa si intenda quando si afferma che, tenendo conto di eventuali molteplicità, un polinomio a coefficienti complessi ha sempre un numero di radici complesse pari al suo grado. È questa la forma completa del teorema fondamentale dell ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: TEOREMA FONDAMENTALE DELL’ALGEBRA – PIERRE-SIMON DE LAPLACE – JOSEPH-LOUIS LAGRANGE – CARL FRIEDRICH GAUSS – NUMERI COMPLESSI
Mostra altri risultati Nascondi altri risultati su teorema fondamentale dell'algebra (1)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. L'emergere della concezione strutturale in algebra

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. L'emergere della concezione strutturale in algebra Leo Corry L'emergere della concezione strutturale in algebra Il punto di vista strutturale [...] 'analisi matematica, come la teoria dei limiti e il concetto di continuità. Troviamo così una discussione del teorema di Sturm sul numero di radici di un polinomio appartenenti a un dato intervallo reale. In questo teorema si considerano derivate e ... Leggi Tutto
CATEGORIA: ALGEBRA – STORIA DELLA MATEMATICA

intero

Dizionario delle Scienze Fisiche (1996)

intero intèro [agg. e s.m. Der. del lat. integer -egri] [LSF] Che ha tutte le sue parti e, come s.m., l'insieme delle parti, il tutto. ◆ [ALG] I. algebrico: numero che sia radice di un'equazione irriducibile [...] possieda nessuna singolarità per valori finiti delle variabili (come capita per i polinomi). ◆ [ALG] Numeri i. o i. relativi: quelli che possono, intuitivamente, ottenersi dotando di un segno + (i. positivi) o - (i. negativi) tutti i numeri naturali ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su intero (2)
Mostra Tutti
1 2 3 4 5 6
Vocabolario
ségno
ségno s. m. [lat. sĭgnum «segno visibile o sensibile di qualche cosa; insegna militare; immagine scolpita o dipinta; astro», forse affine a secare «tagliare, incidere»]. – 1. a. Qualsiasi fatto, manifestazione, fenomeno da cui si possono trarre...
quadràtico
quadratico quadràtico agg. [der. di quadrato2] (pl. m. -ci). – 1. In matematica e nelle applicazioni, relativo all’elevazione a quadrato. È usato in locuzioni di sign. partic., tra le quali: a. Equazioni q., equazioni algebriche di secondo...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali