• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
63 risultati
Tutti i risultati [63]
Matematica [30]
Fisica [25]
Algebra [17]
Geometria [10]
Temi generali [11]
Fisica matematica [10]
Analisi matematica [10]
Meccanica dei fluidi [8]
Statistica e calcolo delle probabilita [7]
Elettrologia [5]

àlgebra

Dizionario delle Scienze Fisiche (1996)

algebra àlgebra [Lat. algebra, der. dell'arabo al-giabr propr. "restaurazione", e quindi "riduzione" (dapprima nel signif. medico-chirurgico, e poi in quello matematico), che compare la prima volta in [...] ogni coppia di o∈O, a∈A esiste un unico prodotto oa∈A e questa operazione di prodotto soddisfa le relazioni: (o₁+o₂)a=o₁a+o₂a v. algebra e algebre di operatori). ◆ [ALG] A. tensoriale: lo studio delle operazioni algebriche fra tensori: v. tensore: VI ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – FISICA NUCLEARE – ALGEBRA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA
Mostra altri risultati Nascondi altri risultati su àlgebra (9)
Mostra Tutti

Gruppi

Enciclopedia del Novecento (1978)

Gruppi GGeorge W. Mackey di George W. Mackey SOMMARIO: 1. Introduzione e storia. □ 2. Concetti fondamentali. □ 3. Anelli di endomorfismi e gruppi lineari. □ 4. La struttura dei gruppi finiti. □ 5. Gruppi [...] (T1 ⊗ T2)(f × g) = T1(f) × T2(g). Se L e M sono rappresentazioni unitarie rispettivamente di G1 e G2 definiremo L × M, prodotto tensoriale di L e M, come la rappresentazione unitaria x, y ???14??? Lx ⊗ My. Si può dimostrare che L × M è irriducibile ... Leggi Tutto
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – CONDIZIONI NECESSARIE E SUFFICIENTI – TEOREMA FONDAMENTALE DELL'ALGEBRA – PRINCIPIO DI ESCLUSIONE DI PAULI – LEGGE DI RECIPROCITÀ QUADRATICA

Simmetrie e invarianze

Enciclopedia del Novecento (1982)

Simmetrie e invarianze LLuigi A. Radicati di Brozolo di Luigi A. Radicati di Brozolo SOMMARIO: 1. Introduzione e brevi cenni storici. □ 2. La struttura dello spazio-tempo assoluto. □ 3. Il ruolo della [...] dei gruppi di interesse fisico sono ormai note e classificate. Se U(α) e U(β) sono due rappresentazioni irriducibili, il loro prodotto tensoriale, cioè la rappresentazione U(α)×U(β):g???14???Ug(α)×Ug(β), non è in generale irriducibile, ma può venire ... Leggi Tutto
TAGS: PRINCIPIO DI ESCLUSIONE DI PAULI – EQUAZIONI ALLE DERIVATE PARZIALI – ROTTURA SPONTANEA DI SIMMETRIA – FISICA NUCLEARE E SUBNUCLEARE – RAPPRESENTAZIONE IRRIDUCIBILE

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] W. Il passo successivo è stato la classificazione dei fattori di tipo III da parte di A. Connes. Con l'aiuto del prodotto tensoriale infinito L (C2) ⊗ L (C2) ⊗ L (C2) ..., R. Power trovò la cosiddetta algebra dei fermioni, una famiglia (Wλ)0〈λ〈1 di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] Si spiega il cambiamento di base e si definiscono le matrici equivalenti e quelle simili. Si prende in esame il prodotto tensoriale di matrici equivalenti e simili. Si introducono i gruppi commutativi graduati, gli anelli graduati e i moduli graduati ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica Jeremy Gray Geometria algebrica Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] come fibra su x semplicemente E1x⊕E2x. In modo analogo, il prodotto tensoriale di due spazi si generalizza nel prodotto tensoriale di due fibrati vettoriali, e queste due operazioni di somma e prodotto danno a K(X) la struttura di anello, graduato in ... Leggi Tutto
CATEGORIA: GEOMETRIA – STATISTICA E CALCOLO DELLE PROBABILITA

La seconda rivoluzione scientifica: matematica e logica. Algebra

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Algebra Claudio Procesi Algebra Per comprendere la storia dell'algebra del XX sec. è necessario fare un breve quadro dello sviluppo della disciplina [...] =1,…,k. Si considerano per ogni i le due algebre Ai e Bi di tutti gli operatori su Ui e Vi rispettivamente, si formano i prodotti tensoriali Ui⊗Vi e Ai⊗Bi (che si identifica con l'algebra di tutti gli operatori su Ui⊗Vi) e le somme dirette W:=⊕Ki=1Ui ... Leggi Tutto
CATEGORIA: ALGEBRA

Clifford, algebra di

Enciclopedia della Matematica (2013)

Clifford, algebra di Clifford, algebra di particolare struttura algebrica di interesse matematico che trova applicazioni anche in fisica. È così definibile: dati uno spazio vettoriale V su un campo K [...] T(V) di V per l’ideale generato dall’insieme {v ⊗ v − Q(v); ∀v ∈ V}, dove ⊗ indica il prodotto tensoriale. Nel caso particolare in cui Q è la forma quadratica nulla, l’algebra di Clifford corrispondente è l’algebra esterna di V. Se b: V × V ... Leggi Tutto
TAGS: SOTTOSPAZIO VETTORIALE – APPLICAZIONE LINEARE – ALGEBRA DI CLIFFORD – ALGEBRA ASSOCIATIVA – PRODOTTO TENSORIALE

MATEMATICA NON COMMUTATIVA

Enciclopedia Italiana - VI Appendice (2000)

MATEMATICA NON COMMUTATIVA La seconda metà del 20° secolo ha visto lo sviluppo di una molteplicità di ricerche matematiche, alcune motivate da considerazioni puramente interne, altre ispirate da problemi [...] sempre, nel caso quantistico essa era soggetta a forti restrizioni. Per es., anche nel semplice caso di un prodotto tensoriale di due algebre di matrici, un'attesa condizionata suriettiva sul primo fattore, compatibile con un dato stato, esiste ... Leggi Tutto

algebra esterna

Enciclopedia della Matematica (2013)

algebra esterna algebra esterna o algebra di Grassmann, in geometria algebrica o in geometria differenziale, l’algebra esterna di uno spazio vettoriale V* su un campo K è l’algebra associativa unitaria [...] di tensori alterni non è alterno; tuttavia è possibile definire a partire dal prodotto tensoriale un prodotto (indicato con il simbolo ∧ e detto prodotto esterno o prodotto wedge) tra tensori alterni come segue. Se φ è un r-tensore, sia Alt ... Leggi Tutto
TAGS: GEOMETRIA DIFFERENZIALE – SOTTOSPAZIO VETTORIALE – APPLICAZIONE LINEARE – ALGEBRA DI GRASSMANN – ALGEBRA ASSOCIATIVA
1 2 3 4 5 6 7
Vocabolario
tensoriale
tensoriale agg. [der. di tensore2]. – In matematica, di tensore, relativo a un tensore: calcolo t., l’insieme delle regole che consentono di utilizzare i tensori nelle applicazioni geometriche e fisiche, e contemplano la possibilità di effettuare...
prodótto²
prodotto2 prodótto2 s. m. [part. pass. sostantivato di produrre]. – 1. Genericam., tutto ciò che la terra produce o che costituisce il risultato di una qualsiasi attività umana: p. agricoli, vegetali; i p. della terra, del suolo, dei campi,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali