• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
atlante
Le parole valgono
lingua italiana
96 risultati
Tutti i risultati [344]
Matematica [96]
Fisica [88]
Fisica matematica [44]
Temi generali [42]
Analisi matematica [39]
Algebra [36]
Meccanica [24]
Meccanica quantistica [24]
Meccanica dei fluidi [21]
Biologia [20]

operatori compatti

Enciclopedia della Scienza e della Tecnica (2008)

operatori compatti Luca Tomassini Operatori lineari su uno spazio di Hilbert ℋ vicini in un senso opportuno agli operatori di dimensione finita, ovvero agli operatori che mandano ℋ in un sottospazio [...] o completamente continuo se trasforma ogni insieme limitato in un insieme la cui chiusura nella topologia indotta dal prodotto scalare è compatta. In uno spazio di Hilbert a dimensione finita ogni operatore lineare è compatto, poiché trasforma ogni ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: OPERATORE COMPATTO – OPERATORE IDENTITÀ – ANALISI MATEMATICA – SPAZIO DI HILBERT – OPERATORE LINEARE

metrica riemanniana

Enciclopedia della Scienza e della Tecnica (2008)

metrica riemanniana Luca Tomassini Un tensore g di rango 2 definito su una varietà differenziabile n-dimensionale che sia covariante, ­simmetrico e definito positivo. In ogni spazio tangente TπMν nel [...] p∈Mν) la base locale ∂ι (i=1,…,n), le componenti di g prendono la forma gιξ=〈∂ι,∂ξ> così che dove Se il prodotto scalare 〈∙,∙> non è definito positivo ma semplicemente non degenere (ovvero 〈X,Y>=0 per ogni Y∈TπMν implica X=0), oltre che ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: VARIETÀ DIFFERENZIABILE – GEOMETRIA DIFFERENZIALE – SPAZIO VETTORIALE – PRODOTTO SCALARE – CAMPO TENSORIALE
Mostra altri risultati Nascondi altri risultati su metrica riemanniana (1)
Mostra Tutti

serie di Fourier

Enciclopedia della Scienza e della Tecnica (2008)

serie di Fourier Luca Tomassini L’espressione di una funzione f di una o più variabili reali per mezzo di un sistema di funzioni ortonormali. Più precisamente, sia F uno spazio vettoriale (completo) [...] coefficienti di Fourier di F e sono espressi dalla formula ck=(φk,f) e la serie si intende convergere nella norma indotta dal prodotto scalare. In altri termini, la serie di Fourier di una funzione f in uno spazio F è definita come lo sviluppo di f ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FUNZIONI A QUADRATO SOMMABILE – FUNZIONI TRIGONOMETRICHE – COEFFICIENTI DI FOURIER – TEOREMA DI DIRICHLET – SPAZIO DI HILBERT
Mostra altri risultati Nascondi altri risultati su serie di Fourier (1)
Mostra Tutti

traccia

Enciclopedia della Scienza e della Tecnica (2008)

traccia Luca Tomassini Nel caso di un operatore lineare (matrice quadrata) di uno spazio vettoriale euclideo n-dimensionale in sé A=∣∣aij∣∣ (con aij numeri complessi e i,j=1,...,n), la traccia di A [...] . La generalizzazione del concetto di traccia al caso di spazi vettoriali di dimensione infinita dotati di prodotto scalare (di Hilbert) ℋ si è dimostrata uno strumento fondamentale nello studio delle sottoalgebre dell’algebra degli operatori ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: SPAZIO VETTORIALE EUCLIDEO – OPERATORE HERMITIANO – SPAZIO DI HILBERT – OPERATORE LINEARE – PRODOTTO SCALARE
Mostra altri risultati Nascondi altri risultati su traccia (4)
Mostra Tutti

teorema della divergenza

Enciclopedia della Scienza e della Tecnica (2008)

teorema della divergenza Luca Tomassini Una formula nel calcolo di integrali multipli di funzioni di più variabili che stabilisce un legame tra un integrale (di volume) su un dominio n-dimensionale [...] divergenza di a(x). Notiamo che, indicando con il simbolo ∇=(∂/∂x1,...,∂/∂xn) l’operatore gradiente e con ( , ) l’usuale prodotto scalare in ℝn, si può scrivere diva(x)=(∇,a(x)). Il teorema della divergenza prende allora la forma dove l’integrale a ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: INTEGRABILI SECONDO LEBESGUE – EQUAZIONI DIFFERENZIALI – INTEGRALI MULTIPLI – DERIVATE PARZIALI – CAMPO VETTORIALE
Mostra altri risultati Nascondi altri risultati su teorema della divergenza (1)
Mostra Tutti

spazio di Fourier

Enciclopedia della Scienza e della Tecnica (2008)

spazio di Fourier Francesco Calogero La trasformata di Fourier F(k) di una data funzione f(x) definita sull’intero asse reale e che si annulla (abbastanza rapidamente) all’infinito, f(±∞)=0, si definisce [...] segue: [2a] formula [2b] formula dove x ≡(x1,...,xN) rispettivamente k≡(k1,...,kN) sono vettori a N dimensioni, il prodotto scalare k ∙x è definito nel modo consueto, ossia [3] formula e [4] formula. Osserviamo infine che l’introduzione del ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: SPAZIO DELLE CONFIGURAZIONI – CORRISPONDENZA BIUNIVOCA – TRASFORMATA DI FOURIER – MECCANICA QUANTISTICA – PRODOTTO SCALARE
Mostra altri risultati Nascondi altri risultati su spazio di Fourier (1)
Mostra Tutti

polinomio

Dizionario delle Scienze Fisiche (1996)

polinomio polinòmio [Comp. di poli- e -nomio di binomio] [ANM] Somma di più monomi, detti termini del p., i cui coefficienti sono detti coefficienti del p.; grado di un p. rispetto a una variabile è [...] . a un certo intervallo (a,b) dell'asse reale, siano funzioni ortogonali in esso, cioè tali che il loro prodotto scalare sia nullo in (a,b); hanno varie applicazioni, per es. nell'analisi numerica. ◆ [ANM] P. sferico: v. equazioni differenziali ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su polinomio (4)
Mostra Tutti

divergenza

Dizionario delle Scienze Fisiche (1996)

divergenza divergènza [Der. del lat. scient. moderno divergentia, dal part. pres. divergens -entis di divergere (J. Kepler, 1611), formato sul precedente devergere "allontanarsi", comp. di de- e vergere [...] "volgere" e quindi "l'allontanarsi"] [ALG] [ANM] Operatore vettoriale differenziale (simb. div oppure come prodotto scalare dell'operatore nabla) che, applicato al vettore di un campo, individua le sorgenti scalari di esso: v. campi, teoria classica ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – GEOFISICA – MECCANICA QUANTISTICA – OTTICA – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su divergenza (3)
Mostra Tutti

spazio di Hilbert

Enciclopedia della Scienza e della Tecnica (2008)

spazio di Hilbert Arrigo Cellina Per poter enunciare il teorema di Pitagora nel piano, occorre definire quando due vettori sono tra loro ortogonali; ciò si ottiene dalla nozione di prodotto scalare [...] spazio di Hilbert ℋ è uno spazio di Banach che generalizza il normale piano euclideo, ossia su cui è definito un prodotto scalare. Si tratta di una funzione 〈∙,∙〉 da ℋ×ℋ in ℝ, con queste proprietà: (a) 〈∙,∙〉 è lineare in entrambe le variabili; (b) è ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: FUNZIONI A QUADRATO SOMMABILE – CLASSI DI EQUIVALENZA – TEOREMA DI PITAGORA – PRODOTTO SCALARE – SPAZIO DI BANACH
Mostra altri risultati Nascondi altri risultati su spazio di Hilbert (1)
Mostra Tutti

TENSORIALE, ALGEBRA e ANALISI

Enciclopedia Italiana - IV Appendice (1981)

TENSORIALE, ALGEBRA e ANALISI Dionigi Galletto Il calcolo t., sinonimo di calcolo differenziale assoluto (v. differenziale assoluto, calcolo, XII, p. 796; tensore, XXXIII, p. 497), i cui fondamenti [...] simmetrico) e non degenere prende il nome di "s. v. euclideo". Il valore g(v, w) (v, w ∈ En) prende il nome di "prodotto scalare" di v per w ed è indicato con v • w (= w • v). Considerata una qualunque base {ei} di En e introdotte le componenti gij ... Leggi Tutto
1 2 3 4 5 6 7 8 ... 10
Vocabolario
scalare¹
scalare1 scalare1 agg. e s. m. [dal lat. scalaris, der. di scalae -arum «scala» (v. scala)]. – 1. agg., non com. Fatto o disposto a scala; più com. in senso fig., che cresce o decresce gradualmente, graduato in progressione. a. Detto delle...
prodótto²
prodotto2 prodótto2 s. m. [part. pass. sostantivato di produrre]. – 1. Genericam., tutto ciò che la terra produce o che costituisce il risultato di una qualsiasi attività umana: p. agricoli, vegetali; i p. della terra, del suolo, dei campi,...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali