Sistemi dinamici
Franco Magri
Dmitrij Anosov
Il concetto di sistema è presente nel dibattito scientifico degli ultimi decenni nelle più diverse discipline: dall'idea di sistema fisico a quella di ecosistema, [...] le equazioni del moto ammettano una rappresentazione alla Lax con matrici L e P che dipendono da un parametro complesso λ, solo se può essere fattorizzato nel prodottodi un bivettore di Poisson e di una forma differenziale esatta. Nulla vieta ...
Leggi Tutto
Termine con cui è anche chiamata l'algebra combinatoria, disciplina che studia, piuttosto che le strutture algebriche classiche (gruppo, anello, corpo, ecc.), le strutture algebriche di tipo più semplice, [...] che verifichi queste due condizioni si chiama matricedi Hadamard. L’ordine n di una tale matrice, se è maggiore di 2, deve essere multiplo di 4. Una congettura afferma inoltre che esistono matricidi Hadamard per tutti gli ordini divisibili per ...
Leggi Tutto
L'Ottocento: matematica. Le origini della teoria dei gruppi
Jeremy Gray
Le origini della teoria dei gruppi
La teoria di Galois e la soluzione algebrica delle equazioni algebriche
La teoria di Galois [...] . Si può dimostrare che l'insieme dei prodotti [Xi,Xi′] genera un ideale.
Lie trovò anche numerosi esempi espliciti, quali: il gruppo delle trasformazioni dello spazio proiettivo n-dimensionale, i gruppi dimatrici e i gruppi che preservano alcune ...
Leggi Tutto
La grande scienza. Combinatoria
Peter J. Cameron
Combinatoria
Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] sono contenute nella tab. 1.
Qui nPk=n(n−1)∙∙∙(n−k+1) (il prodottodi k fattori a partire da n, ciascuno inferiore di uno a quello che lo precede), e nCk=nPk/k! (dove k! è il prodotto degli interi da 1 a k, cioè, in altre parole, il numero delle ...
Leggi Tutto
Numeri, teoria dei
Larry Joel Goldstein
La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri
…, −4, −3, −2, [...] α in OF che non è né zero né un'unità può essere scritto come prodottodi elementi irriducibili, α=π1…πt. Si dice che OF è un dominio a fattorizzazione teoria del corpo di classi.
Forme automorfe
Indichiamo con Γ il gruppo delle matrici 2×2 con ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] , diagonali, monomiali e triangolari. Si spiega il cambiamento di base e si definiscono le matrici equivalenti e quelle simili. Si prende in esame il prodotto tensoriale dimatrici equivalenti e simili. Si introducono i gruppi commutativi graduati ...
Leggi Tutto
Fermat, ultimo teorema di
Massimo Bertolin
"Cubum autem in duos cubos, aut quadrato quadratum in duos quadrato quadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duos ejusdem [...] Se nell'anello ℤ[ζp] vale la proprietà di fattorizzazione unica (come prodottodi fattori primi) ben nota per l'anello ℤ, del gruppo Aut(E[m]) di automorfismi di E[m] con il gruppo GL2(ℤ/mℤ) delle matrici invertibili di ordine 2 a coefficienti in ℤ/ ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Algebra
Claudio Procesi
Algebra
Per comprendere la storia dell'algebra del XX sec. è necessario fare un breve quadro dello sviluppo della disciplina [...] : da tale teorema si deduce che il prodotto tensoriale di due corpi sul loro centro è l'algebra di tutte le matrici su un nuovo corpo, e ciò permette di definire il prodotto nel gruppo di Brauer.
Inoltre, sempre dalla stessa teoria, si deducono ...
Leggi Tutto
matricematrice [Der. del lat. matrix -icis "utero, madre"] [LSF] Raro nel signif. di cosa da cui se ne trae un'altra, indica in genere, concret., la struttura principale di un corpo, nella quale eventualmente [...] dimatrici. ◆ [ANM] M. infinita regolare: v. armonica, analisi: I 126 b. ◆ [ALG] M. inversa: di una m. quadrata M, di un anello rispetto alle operazioni di somma e diprodotto e per le quali si può definire un prodotto per un elemento qualsiasi x ...
Leggi Tutto
vettore
vettóre [agg. m. e s.m. (per il f. → vettrice) Der. del lat. vector -oris "conducente, portatore", dal part. pass. vectus di vehere "condurre, portare"] [ALG] Ente che permette di descrivere [...] terna costituita dai versori cl, c₂, c₃ degli assi di riferimento. Note le componenti cartesiane di a e b, le componenti cartesiane del prodotto v. sono i complementi algebrici dei versori c₁ c₂ c₃ nella matrice ( ax ay az ) , onde si ha v=(aybz ...
Leggi Tutto
prodotto2
prodótto2 s. m. [part. pass. sostantivato di produrre]. – 1. Genericam., tutto ciò che la terra produce o che costituisce il risultato di una qualsiasi attività umana: p. agricoli, vegetali; i p. della terra, del suolo, dei campi,...
idrogeno verde loc. s.le m. Gas non climalterante ottenuto attraverso l'elettrolisi dell'acqua in speciali celle elettrochimiche alimentate da elettricità prodotta da fonti rinnovabili. ◆ L'idrogeno si può ricavare dal metano ma questa è una...