• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
13 risultati
Tutti i risultati [201]
Algebra [13]
Matematica [37]
Fisica [23]
Archeologia [17]
Temi generali [17]
Economia [13]
Arti visive [12]
Chimica [11]
Analisi matematica [9]
Medicina [9]

nilpotente

Enciclopedia on line

In algebra, elemento di un anello (o di un’algebra) se esso è diverso dall’elemento nullo, e tuttavia dà luogo a tale elemento quando venga elevato a un’opportuna potenza; con significati analoghi si riferisce [...] es., la matrice ∥ 2 −2 4−4∥, pur non essendo nulla, è n. rispetto al prodotto righe per colonne, perché il suo quadrato è la matrice nulla. Nilvarietà è lo spazio quoziente di una varietà associata a un gruppo di Lie nilpotente. Due nilvarietà ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: ALGEBRE DI LIE – GRUPPO DI LIE – SE, E SOLO SE – ISOMORFI – ALGEBRA
Mostra altri risultati Nascondi altri risultati su nilpotente (1)
Mostra Tutti

ortogonale

Dizionario delle Scienze Fisiche (1996)

ortogonale ortogonale [Der. del lat. orthogonus, dal gr. orthog✄ònios "ad angolo retto", comp. di orthós "dritto" e g✄onía "angolo"] [ALG] Qualifica di ciascuno di due enti che formano tra loro un angolo [...] f,g)=0. ◆ [ALG] Gruppo o.: il gruppo delle matrici quadrate o. (v. oltre) a elementi reali composte con il prodotto righe per colonne. ◆ [ALG] Matrice o.: matrice R per cui valga RT=R-1, dove RT indica la matrice trasposta di R e R-1 la sua inversa ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

matriciale

Dizionario delle Scienze Fisiche (1996)

matriciale matriciale [agg. Der. di matrice] [ALG] Calcolo m.: s'occupa delle regole delle operazioni che possono essere eseguite su matrici, nonché delle proprietà di tali operazioni: (a) uguaglianza: [...] date, con uguale numero di righe e colonne, è quella che ha per elemento generico la somma degli elementi corrispondenti delle m. da addizionare; (c) moltiplicazione: è definita tramite il prodotto righe per colonne; precis., data una matrice M ... Leggi Tutto
CATEGORIA: ALGEBRA

gruppo

Enciclopedia on line

Biologia G. sanguigni Strutture antigeniche presenti sulla superficie dei globuli rossi e riconosciute da anticorpi specifici (➔ gruppi sanguigni). G. tissutali Insieme di individui istocompatibili, tra [...] matrici (quadrate, di un dato ordine a determinante non nullo): la legge di composizione è l’ordinario prodotto di matrici, di solito eseguito righe per colonne; c) g. i cui elementi sono cicli o classi di cicli (➔ omologia). G. di Lie G. costituiti ... Leggi Tutto
CATEGORIA: BIOCHIMICA – BIOINGEGNERIA – FISIOLOGIA GENERALE – ISTOLOGIA – CHIMICA INORGANICA – CHIMICA ORGANICA – ALGEBRA – ANALISI MATEMATICA – GEOMETRIA – FISIOLOGIA UMANA – ETOLOGIA – SISTEMATICA E ZOONIMI – ISTITUZIONI ENTI MINISTERI – AZIENDE IMPRESE SOCIETA INDUSTRIE – PSICOTERAPIA – ANTROPOLOGIA CULTURALE – SOCIOLOGIA – FORME E STRUMENTI DI GOVERNO – POLITOLOGIA – ELETTROTECNICA
TAGS: RADICI N-ESIME DELL’UNITÀ – CORRISPONDENZA BIUNIVOCA – GENERATORI DI UN GRUPPO – NUMERI INTERI RELATIVI – MECCANICA QUANTISTICA
Mostra altri risultati Nascondi altri risultati su gruppo (7)
Mostra Tutti

forme modulari

Enciclopedia della Scienza e della Tecnica (2008)

forme modulari Massimo Bertolini Si indichi con SL2(ℤ) il gruppo delle matrici 2×2 a coeffcienti nell’anello ℤ degli interi relativi aventi determinante 1, e con Γ0(N) il sottogruppo contenente le matrici [...] modulo un intero positivo N. Gli elementi di SL2(ℤ) sono le matrici [1] con a,b,c,d in ℤ e ad−bc=1; il prodotto di matrici è definito righe per colonne. Una matrice del tipo precedente appartiene a Γ0(N) se N divide c. Si fissi un gruppo Γ=Γ0(N ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: FUNZIONE ZETA DI RIEMANN – ULTIMO TEOREMA DI FERMAT – EQUAZIONE FUNZIONALE – SEMIPIANO SUPERIORE – PRODOTTO DI MATRICI
Mostra altri risultati Nascondi altri risultati su forme modulari (1)
Mostra Tutti

Algebra

Enciclopedia del Novecento (1975)

Algebra Irving Kaplansky sommario: 1. Introduzione. 2. Gruppi in generale. 3. Gruppi semplici finiti. 4. Gruppi infiniti. 5. Gruppi liberi. 6. Gruppi abeliani infiniti. 7. Anelli in generale. 8. Corpi. [...] risultato molto utile per una comprensione concettuale della teoria delle matrici. Per esempio, il prodotto ‛ per colonne' di matrici, f1 , f2 , f4, f5 a sono isomorfismi e le righe sono esatte: Se parliamo di gruppi abeliani e di omomorfismi ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL'ALGEBRA – COSTRUZIONI CON RIGA E COMPASSO – DOMINIO A FATTORIZZAZIONE UNICA – INSIEME PARZIALMENTE ORDINATO – RAPPRESENTAZIONI IRRIDUCIBILI
Mostra altri risultati Nascondi altri risultati su Algebra (9)
Mostra Tutti

matrice

Dizionario delle Scienze Fisiche (1996)

matrice matrice [Der. del lat. matrix -icis "utero, madre"] [LSF] Raro nel signif. di cosa da cui se ne trae un'altra, indica in genere, concret., la struttura principale di un corpo, nella quale eventualmente [...] a quella di una m. matematica, cioè a righe e colonne: per es., le m. di elementi di memoria che costituiscono ; gode della proprietà Ax✄y=x✄A∗y, dove ✄ è il prodotto hermitiano tra le grandezze vettoriali indicate. ◆ [ALG] M. antisimmetrica: lo ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA NUCLEARE – MECCANICA QUANTISTICA – STORIA DELLA FISICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – EPISTEMOLOGIA – METAFISICA – ELETTRONICA
Mostra altri risultati Nascondi altri risultati su matrice (5)
Mostra Tutti

risultante

Enciclopedia on line

Fisica In analisi vettoriale, di un sistema di vettori, liberi o applicati, si dice r. o somma vettoriale il vettore che si ottiene come risultato dell’operazione di composizione. In particolare, il r. [...] : (nell’ultima di esse il prodotto va eseguito facendo variare gli indici r è data dal determinante di ordine m+n: Per es., se f(x), g(x) sono righe contenenti i coefficienti a, le ultime i righe contenenti i coefficienti b e le ultime 2i colonne ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA DEI FLUIDI – TEMI GENERALI – ALGEBRA
TAGS: FUNZIONE RAZIONALE INTERA – EQUAZIONI ALGEBRICHE – ANALISI VETTORIALE – TEOREMA DI BÉZOUT – TERNA CARTESIANA
Mostra altri risultati Nascondi altri risultati su risultante (6)
Mostra Tutti

ALGEBRA LINEARE

Enciclopedia Italiana - VII Appendice (2006)

L'a. l. costituisce uno strumento matematico di importanza fondamentale in ogni disciplina scientifica. Essa costituisce sia un efficace linguaggio comune con cui formulare problemi di natura diversa, [...] più compatta come Ax=b, dove si denota con A=(ai,j) la tabella di m righe e di n colonne formata dagli ai,j, con x=(xi) la n-upla di valori (x1,...,xn) prodotto di una matrice unitaria Q e di una matrice triangolare superiore R. Metodi iterativi per ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: DECOMPOSIZIONE AI VALORI SINGOLARI – EQUAZIONI DIFFERENZIALI ORDINARIE – METODO DI ELIMINAZIONE GAUSSIANA – SISTEMI DI EQUAZIONI LINEARI – ESPONENZIALE DI UNA MATRICE
Mostra altri risultati Nascondi altri risultati su ALGEBRA LINEARE (1)
Mostra Tutti

numero

Dizionario delle Scienze Fisiche (1996)

numero nùmero [Der. del lat. numerus] [LSF] Oltre che nei vari signif. propri della matematica, alcuni dei quali sono ricordati oltre, il termine è usato in varie discipline fisiche anche come sinon. [...] n. naturale che sia uguale al prodotto dei suoi divisori (escluso il n. stesso); anche per essi manca una formula generale, pur sapendosi a n2 (con n≥2) in una tabella quadrata di n righe e n colonne in modo che nella prima riga compaiano i n. da 1 ... Leggi Tutto
CATEGORIA: ASTROFISICA E FISICA SPAZIALE – BIOFISICA – ELETTROLOGIA – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA NUCLEARE – MECCANICA – MECCANICA DEI FLUIDI – METROLOGIA – STORIA DELLA FISICA – TEMI GENERALI – ALGEBRA – STATISTICA E CALCOLO DELLE PROBABILITA
Mostra altri risultati Nascondi altri risultati su numero (6)
Mostra Tutti
1 2
Vocabolario
quadrato²
quadrato2 quadrato2 s. m. [lat. quadratum, neutro sostantivato dell’agg. quadratus (v. la voce prec.)]. – 1. In geometria, figura piana, quadrilatero avente i quattro lati, e così pure i quattro angoli, fra loro uguali: tracciare, disegnare...
spàzio
spazio spàzio s. m. [dal lat. spatium, forse der. di patēre «essere aperto»]. – 1. Con valore assol., il luogo indefinito e illimitato in cui si pensano contenute tutte le cose materiali, le quali, in quanto hanno un’estensione, ne occupano...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali