• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
vocabolario
32 risultati
Tutti i risultati [164]
Algebra [32]
Matematica [86]
Fisica [29]
Analisi matematica [27]
Temi generali [23]
Fisica matematica [22]
Storia della matematica [22]
Statistica e calcolo delle probabilita [12]
Informatica [11]
Geometria [8]

quadratico

Dizionario delle Scienze Fisiche (1996)

quadratico quadràtico [agg. (pl.m. -ci) Der. di quadrato] [LSF] Con signif. derivato da quello strettamente algebrico, e cioè relativ. all'operazione di elevazione al quadrato, qualifica di espressioni [...] , cioè lo stesso che errore standard: v. misure fisiche: IV 49 b. ◆ [ALG] Forma q.: polinomio omogeneo di secondo grado in più variabili. ◆ [ALG] Irrazionale q.: espressione algebrica nella quale compaiono soltanto operazioni razionali ed estrazioni ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – TEMI GENERALI – ALGEBRA – STATISTICA E CALCOLO DELLE PROBABILITA

minimo

Dizionario delle Scienze Fisiche (1996)

minimo mìnimo [agg. e s.m. Der. del lat. minimus "il più piccolo", superlativo di parvus "piccolo"] [LSF] (a) agg. Oltre che come superlativo di piccolo, si usa spesso in contrapp. a massimo. (b) Sostantivato, [...] . ◆ [ALG] M. comune multiplo di polinomi: il polinomio di grado m. che sia multiplo di tutti i polinomi dati, sempre definito a meno di una costante moltiplicativa arbitraria. ◆ [ANM] M. di una funzione: una funzione reale di una variabile reale, f(x ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA – MECCANICA DEI FLUIDI – MECCANICA QUANTISTICA – OTTICA – TEMI GENERALI – TERMODINAMICA E TERMOLOGIA – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA – MECCANICA APPLICATA

Laguerre Edmond-Nicolas

Dizionario delle Scienze Fisiche (1996)

Laguerre Edmond-Nicolas Laguerre 〈lag✄èr〉 Edmond-Nicolas [STF] (Bar-le-Duc 1834 - m. 1886) Ufficiale di artiglieria, poi prof. di geometria nell'Accademia delle scienze di Parigi (1874). ◆ [ANM] Equazione [...] L.: l'equazione differenziale lineare del secondo ordine xy''+(1-x)y'+ay=0, con a costante reale; nel caso particolare che a sia un numero naturale n, una sua soluzione è il polinomio (polinomio di L.) definito dalla formula Ln(x)=expx dn[xn exp(-x ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: ACCADEMIA DELLE SCIENZE DI PARIGI – EQUAZIONE DIFFERENZIALE – MECCANICA QUANTISTICA – CAMPO REALE – POLINOMIO
Mostra altri risultati Nascondi altri risultati su Laguerre Edmond-Nicolas (1)
Mostra Tutti

ipersuperficie

Dizionario delle Scienze Fisiche (1996)

ipersuperficie ipersuperfìcie [Comp. di iper- e superficie] [ALG] Varietà di un iperspazio di dimensione r e avente dimensione r-1, com'è, per es., una superficie nello spazio ordinario e una curva piana [...] un polinomio p nelle coordinate, cartesiane o proiettive, dell'iperspazio; ordine dell'i. è il grado di p; data è di secondo ordine, si ottiene nei due casi la retta polare di un punto rispetto a una conica e il piano polare di un punto rispetto ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – RELATIVITA E GRAVITAZIONE – ALGEBRA
Mostra altri risultati Nascondi altri risultati su ipersuperficie (1)
Mostra Tutti

curva

Enciclopedia on line

Matematica Generalità Nel linguaggio matematico, sinonimo di linea, intendendosi quindi anche la retta come una particolare curva. Una definizione di c. valida in ogni caso non è possibile per il fatto [...] d’incontro con una retta generica del piano: è uguale al grado del polinomio f (x, y); classe è il numero delle tangenti che iperspazi. Esempi di c. sghembe sono l’elica cilindrica, la finestra di Viviani, le quartiche di prima e di seconda specie. ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – TEMI GENERALI
TAGS: EQUAZIONI PARAMETRICHE – DUPLICAZIONE DEL CUBO – COORDINATE CARTESIANE – COORDINATE OMOGENEE – ASCISSA CURVILINEA
Mostra altri risultati Nascondi altri risultati su curva (4)
Mostra Tutti

La grande scienza. Teoria dei numeri

Storia della Scienza (2003)

La grande scienza. Teoria dei numeri Anatolij A. Karatsuba Teoria dei numeri La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] primi dei numeri naturali, egli dimostrò l'identità di Euler: dove a secondo membro il prodotto è esteso a tutti i razionali', cioè non si può rappresentare come prodotto di due polinomi di grado positivo a coefficienti razionali. Se a=1 allora ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

Numeri, teoria dei

Enciclopedia della Scienza e della Tecnica (2007)

Numeri, teoria dei Larry Joel Goldstein La teoria dei numeri è il settore della matematica dedicato allo studio delle proprietà degli interi, cioè dell'insieme ℤ costituito dai numeri …, −4, −3, −2, [...] n è detto il grado di α e f(x) è detto il polinomio minimo di α. Indichiamo con F l'insieme di tutti i numeri della forma solo se non divide h0. L'interpretazione del secondo fattore è meglio conosciuta di quella del primo: è noto per esempio che ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL'ARITMETICA – DOMINIO A FATTORIZZAZIONE UNICA – LEGGE DI RECIPROCITÀ QUADRATICA – CHARLES DE LA VALLÉE POUSSIN – TEOREMA DI KRONECKER-WEBER
Mostra altri risultati Nascondi altri risultati su Numeri, teoria dei (4)
Mostra Tutti

Fermat, ultimo teorema di

Enciclopedia della Scienza e della Tecnica (2007)

Fermat, ultimo teorema di Massimo Bertolin "Cubum autem in duos cubos, aut quadrato quadratum in duos quadrato quadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duos ejusdem [...] Euler fu in grado di dimostrare il caso di L(f,s) e quindi di L(E,s). La seconda parte della congettura di Birch e Swinnerton-Dyer è nota, grazie ai teoremi di Benedict Gross e Don Zagier e di Victor Kolyvagin, solamente se l'ordine di annullamento di ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – CONGETTURA DI BIRCH E SWINNERTON-DYER – PETER GUSTAV, LEJEUNE DIRICHLET – DOMINI A FATTORIZZAZIONE UNICA – TEOREMA DI KRONECKER-WEBER
Mostra altri risultati Nascondi altri risultati su Fermat, ultimo teorema di (2)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Algebra

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Algebra Claudio Procesi Algebra Per comprendere la storia dell'algebra del XX sec. è necessario fare un breve quadro dello sviluppo della disciplina [...] , la K-teoria. è una costruzione recente motivata da molteplici tipi di ricerche: una congettura di Serre, risolta da Daniel Quillen e Suslin, secondo la quale un modulo proiettivo su un anello di polinomi su un campo è libero e i tentativi, in parte ... Leggi Tutto
CATEGORIA: ALGEBRA

teorema fondamentale dell'algebra

Enciclopedia della Scienza e della Tecnica (2008)

teorema fondamentale dell’algebra Luca Tomassini Teorema che stabilisce, per ogni polinomio a coefficienti complessi, l’esistenza di almeno una radice nel campo dei numeri complessi. Più precisamente, [...] è poi difficile dimostrare che ogni polinomio può essere decomposto nel prodotto di termini lineari (di grado 1), ovvero con c,αi∈ℂ. effettivamente; solo in un secondo momento era provato che si trattava di numeri complessi (che includono, ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: TEOREMA FONDAMENTALE DELL’ALGEBRA – PIERRE-SIMON DE LAPLACE – JOSEPH-LOUIS LAGRANGE – CARL FRIEDRICH GAUSS – NUMERI COMPLESSI
Mostra altri risultati Nascondi altri risultati su teorema fondamentale dell'algebra (1)
Mostra Tutti
1 2 3 4
Vocabolario
grado¹
grado1 grado1 s. m. [lat. gradus -us «passo, scalino», dallo stesso tema di gradi «camminare, avanzare»]. – 1. a. ant. Gradino, scalino: Scala drizzò di cento gradi e cento (T. Tasso). Più raram., passo: deh ferma un poco il g. (Boccaccio)....
ségno
ségno s. m. [lat. sĭgnum «segno visibile o sensibile di qualche cosa; insegna militare; immagine scolpita o dipinta; astro», forse affine a secare «tagliare, incidere»]. – 1. a. Qualsiasi fatto, manifestazione, fenomeno da cui si possono trarre...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali