Operatori, teoria degli
Helmut H. Schaefer e Manfred P. Wolff
Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] polinomiodigrado più piccolo che annulla A; quest'ultimo (con il coefficiente di ordine massimo uguale a 1) è univocamente determinato, è chiamato ‛polinomio minimo' m (λ) di A ed è un divisore di anche continui (secondo il teorema di Banach sui ...
Leggi Tutto
Equazioni differenziali: problemi non lineari
Jean Mawhin
La modellizzazione di molti problemi fisici porta alla ricerca di soluzioni di equazioni differenziali disecondo ordine, ordinarie o alle derivate [...] di esistenza degli zeri di Bolzano (shooting method) ma, nel secondo caso, richiede più sofisticati strumenti topologici, come il gradodi Brouwer.
Il gradodi quando p è un polinomio reale di ordine dispari il cui termine di ordine massimo ha un ...
Leggi Tutto
L'Ottocento: matematica. Metodi del calcolo numerico
Dominique Tournès
Metodi del calcolo numerico
Prima del 1870 l'analisi numerica non si era ancora sviluppata come disciplina autonoma; esisteva [...] delle volte nuovi metodi di calcolo comparivano direttamente nelle applicazioni, a seconda delle esigenze, in polinomidigrado minore o uguale a n−1. Gauss immagina allora di prendere n punti di interpolazione indipendenti nell'intervallo di ...
Leggi Tutto
omogeneo
omogèneo [Der. del lat. homogeneus, dal gr. homog✄enés "della stessa stirpe", comp. di homo- "omo-" e del tema g✄en- "generare"] [LSF] Qualifica di un corpo, un sistema, una sostanza (un mezzo) [...] da termini tutti dello stesso grado: polinomio o. di terzo grado (per es., lo sviluppo del cubo di un binomio), equazione algebrica o. lineare (termini di primo grado), quadratica (disecondogrado), ecc., equazione differenziale o. lineare ...
Leggi Tutto
minimo
mìnimo [agg. e s.m. Der. del lat. minimus "il più piccolo", superlativo di parvus "piccolo"] [LSF] (a) agg. Oltre che come superlativo di piccolo, si usa spesso in contrapp. a massimo. (b) Sostantivato, [...] . ◆ [ALG] M. comune multiplo dipolinomi: il polinomiodigrado m. che sia multiplo di tutti i polinomi dati, sempre definito a meno di una costante moltiplicativa arbitraria. ◆ [ANM] M. di una funzione: una funzione reale di una variabile reale, f(x ...
Leggi Tutto
Laguerre Edmond-Nicolas
Laguerre 〈lag✄èr〉 Edmond-Nicolas [STF] (Bar-le-Duc 1834 - m. 1886) Ufficiale di artiglieria, poi prof. di geometria nell'Accademia delle scienze di Parigi (1874). ◆ [ANM] Equazione [...] L.: l'equazione differenziale lineare del secondo ordine xy''+(1-x)y'+ay=0, con a costante reale; nel caso particolare che a sia un numero naturale n, una sua soluzione è il polinomio (polinomiodi L.) definito dalla formula Ln(x)=expx dn[xn exp(-x ...
Leggi Tutto
Parte dell’analisi matematica che si occupa della ricerca di algoritmi per la risoluzione numerica di problemi quali l’approssimazione di funzioni e l’integrazione di equazioni differenziali ordinarie [...] una successione dipolinomidigrado decrescente: p0(x), p1(x), …, pk(x) detta catena (o successione) di Sturm relativa equazione deve completarsi con i valori al contorno e (essendo del secondo ordine nel tempo) con due condizioni iniziali, u(0, x ...
Leggi Tutto
Anatomia
Ammasso di cellule epiteliali alla cui attività si deve la formazione di un tessuto.
M. dell’unghia L’ammasso di cellule dello strato onicogeno che si osserva in corrispondenza della radice dell’unghia [...] di una matrice
Per una m. A quadrata di ordine n, è l’equazione algebrica digradodi A; il primo membro dell’equazione si dice polinomio caratteristico di e n colonne, la seconda a m′ righe e n′ colonne, ammettono diversi tipi di prodotti; quello più ...
Leggi Tutto
La grande scienza. Teoria dei numeri
Anatolij A. Karatsuba
Teoria dei numeri
La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] primi dei numeri naturali, egli dimostrò l'identità di Euler:
dove a secondo membro il prodotto è esteso a tutti i razionali', cioè non si può rappresentare come prodotto di due polinomidigrado positivo a coefficienti razionali. Se a=1 allora ...
Leggi Tutto
L'Eta dei Lumi: matematica. Le equazioni differenziali
Silvia Mazzone
Clara Silvia Roero
Le equazioni differenziali
E con la nascita del calcolo infinitesimale di Newton e di Leibniz, nella seconda [...] ancora in gradodi risolvere. Pochi anni dopo egli elabora un metodo per le equazioni alle derivate parziali del secondo ordine, che particolari in cui S è un polinomio. Va appunto a Laplace il merito di aver attirato l'attenzione dei matematici sull ...
Leggi Tutto
grado1
grado1 s. m. [lat. gradus -us «passo, scalino», dallo stesso tema di gradi «camminare, avanzare»]. – 1. a. ant. Gradino, scalino: Scala drizzò di cento gradi e cento (T. Tasso). Più raram., passo: deh ferma un poco il g. (Boccaccio)....
equazione
equazióne s. f. [dal lat. aequatio -onis, der. di aequare «uguagliare»]. – Propr., uguaglianza, uguagliamento, pareggiamento. Il termine, raro con uso generico (si adopera tuttavia, a volte, nel linguaggio letter. e in frasi di tono...