• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
180 risultati
Tutti i risultati [386]
Matematica [180]
Algebra [74]
Fisica [64]
Analisi matematica [57]
Fisica matematica [50]
Storia della matematica [37]
Temi generali [29]
Storia della fisica [23]
Biografie [21]
Geometria [19]

simmetrico

Dizionario delle Scienze Fisiche (1996)

simmetrico simmètrico [agg. (pl.m. -ci) Der. di simmetria] [LSF] Di sistemi che presentino una qualche simmetria, per lo più geometrica, nella loro configurazione ma anche di funzioni che li descrivono, [...] con la sua trasposta. ◆ [ANM] Operatore s.: v. equazioni integrali: II 479 f. ◆ [ALG] Polinomio s.: quello che sia una funzione s. nelle sue indeterminate; i polinomi s. fondamentali sono la somma delle indeterminate, la somma dei prodotti a due a ... Leggi Tutto
CATEGORIA: ELETTROLOGIA – FISICA MATEMATICA – FISICA TECNICA – GEOFISICA – STORIA DELLA FISICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – EPISTEMOLOGIA – METAFISICA – ELETTRONICA

Laguerre Edmond-Nicolas

Dizionario delle Scienze Fisiche (1996)

Laguerre Edmond-Nicolas Laguerre 〈lag✄èr〉 Edmond-Nicolas [STF] (Bar-le-Duc 1834 - m. 1886) Ufficiale di artiglieria, poi prof. di geometria nell'Accademia delle scienze di Parigi (1874). ◆ [ANM] Equazione [...] 1-x)y'+ay=0, con a costante reale; nel caso particolare che a sia un numero naturale n, una sua soluzione è il polinomio (polinomio di L.) definito dalla formula Ln(x)=expx dn[xn exp(-x)]/dxn, oppure, per ricorrenza, dalla formula nLn=(2n-x-1)Ln-1 ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA – ANALISI MATEMATICA
TAGS: ACCADEMIA DELLE SCIENZE DI PARIGI – EQUAZIONE DIFFERENZIALE – MECCANICA QUANTISTICA – CAMPO REALE – POLINOMIO
Mostra altri risultati Nascondi altri risultati su Laguerre Edmond-Nicolas (1)
Mostra Tutti

armònica

Dizionario delle Scienze Fisiche (1996)

armonica armònica [s.f. Der. dell’agg. armonico]  ◆ [ANM] Ciascuno dei termini sinusoidali dell’analisi armonica di una funzione: prima a., o a. fondamentale, seconda a., terza a., ecc. (sottintendendo [...] g e h sono detti coefficienti di Gauss, mentre Pnm(J) sono le funzioni di Legendre nominate prima; si tratta di polinomi di Legendre leggermente modificati in modo che l’entità di essi non svanisca troppo rapidamente al crescere del grado n, secondo ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
Mostra altri risultati Nascondi altri risultati su armònica (1)
Mostra Tutti

fattore

Dizionario delle Scienze Fisiche (1996)

fattore fattóre [Der. del lat. factor "che fa", dal part. pass. factus di facere "fare"] [LSF] Generic., grandezza (a seconda dei casi adimensionata oppure dimensionata) interpretabile come una sorta [...] per parti: → integrazione. ◆ [ALG] Decomposizione in f.: il procedimento che porta a esprimere un numero, un polinomio, ecc. come prodotto di altri numeri, polinomi, ecc., che sono suoi f.; in partic., decomposizione di un numero in f. primi e di un ... Leggi Tutto
CATEGORIA: ACUSTICA – ELETTROLOGIA – FISICA ATOMICA E MOLECOLARE – FISICA DEI PLASMI – FISICA DEI SOLIDI – FISICA MATEMATICA – FISICA NUCLEARE – OTTICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA

La civiltà islamica: antiche e nuove tradizioni in matematica. La tradizione araba del Libro X degli Elementi

Storia della Scienza (2002)

La civilta islamica: antiche e nuove tradizioni in matematica. La tradizione araba del Libro X degli Elementi Marouane Ben Miled La tradizione araba del Libro X degli Elementi La storia delle letture [...] dei numeri. I numeri razionali e irrazionali positivi costruiti per radicali qualunque erano anch'essi definiti in modo analogo ai polinomi a coefficienti interi in x e 1/x. Guidato da queste analogie, al-Samaw᾽al chiamò le potenze dell'incognita ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

metodo agli elementi finiti

Enciclopedia della Scienza e della Tecnica (2008)

metodo agli elementi finiti Alfio Quarteroni Metodo numerico per l’approssimazione della soluzione di un’equazione (o di un sistema di equazioni) alle derivate parziali. Sia Ω un sottoinsieme limitato [...] ℙκ vuol dire cercare una funzione uη che sia continua su Ω, che ristretta al generico elemento Tι di {T} sia un polinomio di grado k e che sia soluzione del problema dove vη è una generica funzione continua su Ω, polinomiale su ogni elemento dello ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE ALLE DERIVATE PARZIALI – CONDIZIONE AL CONTORNO – OPERATORE DI LAPLACE – FUNZIONE CONTINUA – ALFIO QUARTERONI
Mostra altri risultati Nascondi altri risultati su metodo agli elementi finiti (1)
Mostra Tutti

Geometria differenziale

Enciclopedia del Novecento (1978)

Geometria differenziale SShoshichi Kobayashi di Shoshichi Kobayashi Geometria differenziale sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] gruppo di matrici ortogonali n×n con determinante 1 e sia so(n) la sua algebra di Lie costituita da matrici n×n antisimmetriche. Sia f un polinomio omogeneo di grado r definito su so(n) e invariante in questo senso: f(UXU-1)=f(X) per X∈so(n) e U∈SO(n ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – FUNZIONI DI VARIABILE COMPLESSA – REGIONE SEMPLICEMENTE CONNESSA – CALCOLO DIFFERENZIALE ASSOLUTO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

ALGEBRA OMOLOGICA

Enciclopedia Italiana - V Appendice (1991)

(v. topologia, App:. III, 11, p. 960; algebra omologica, App. IV, I, p. 87) Introduzione. - L'a.o. ha le sue origini nella teoria d'omologia di gruppi astratti che fu coinvolta nello studio di certi spazi [...] -1+...+bsεB[y] è di grado al più s-1, allora per ogni j, 1≤j≤s, l'ideale (f(y), g(y)) in B[y], contiene un polinomio di grado al più s-1 e coefficiente conduttore bj. Diede inoltre una dimostrazione del fatto (Horrocks), che se B è locale ed è A=B[y ... Leggi Tutto
TAGS: SERIE DI POTENZE FORMALI – TEORIA DELLE CATEGORIE – INSIEME DI GENERATORI – ALGEBRICAMENTE CHIUSO – STRUTTURE ALGEBRICHE
Mostra altri risultati Nascondi altri risultati su ALGEBRA OMOLOGICA (1)
Mostra Tutti

FUNZIONE

Enciclopedia Italiana - III Appendice (1961)

FUNZIONE (XVI, p. 185) Luigi AMERIO Funzioni di più variabili complesse. - La teoria delle f. di più variabili complesse ha ricevuto negli ultimi decennî sviluppi notevolissimi, che ne hanno permesso [...] i fattori di convergenza rnk introdotti dal Bochner dipendono dalle λn, ma non dai coefficienti an; costruiti, con questi fattori, i polinomî si ha uniformemente in J. 4. - La definizione di f. q. p., è una definizione in senso forte. A questa può ... Leggi Tutto

ARITMETICA

Enciclopedia Italiana - II Appendice (1948)

Negli ultimi decennî l'aritmetica superiore o teoria dei numeri è stata intensamente coltivata, in ispecie in Germania, nei paesi anglosassoni ed in Russia. Nella impossibilità di esaurire in ogni particolare [...] problema di Hilbert, in Annali della Scuola Normale di Pisa (2), vol. IV, pp. 341-371, 1935; G. Ricci, Ricerche aritmetiche sui polinomi, in Rendiconti del Circolo matematico di Palermo, vol. 57, pp. 433-475, 1933 e vol. 58, pp. 190-207, 1934; G ... Leggi Tutto
TAGS: DISTRIBUZIONE DEI NUMERI PRIMI – PROGRESSIONE ARITMETICA – SCUOLA NORMALE DI PISA – NUMERI TRASCENDENTI – TEORIA DEI RETICOLI
Mostra altri risultati Nascondi altri risultati su ARITMETICA (7)
Mostra Tutti
1 2 3 4 5 6 7 8 ... 10 ... 18
Vocabolario
polinòmio
polinomio polinòmio s. m. [comp. di poli- e -nomio di binomio]. – In matematica, somma di monomî (in senso proprio, solo con riferimento a monomî interi), detti termini del polinomio: binomio, trinomio, quadrinomio, ecc., è un polinomio rispettivam....
fattóre
fattore fattóre s. m. [lat. factor -ōris, der. di facĕre, part. pass. factus]. – 1. letter. Chi fa, facitore, creatore: i f. dell’unità italiana, coloro che più hanno contribuito a farla; si dice in partic. di Dio (cfr. il più com. creatore):...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali