Modelli, Teoria dei
Silvio Bozzi
Malgrado le modeste origini che ne hanno segnato la nascita, la teoria dei modelli ha sviluppato nel corso del tempo idee e metodi che l'hanno resa uno dei settori più [...] X di Mn definibili da formule atomiche coincideranno con gli insiemi algebrici (cioè gli insiemi di zeri di sistemi di polinomi) e, poiché per EQ ogni formula è equivalente a una priva di quantificatori e quindi combinazione booleana di atomiche, gli ...
Leggi Tutto
La grande scienza. Geometria numerativa e invarianti di Gromov-Witten
Enrico Arbarello
Geometria numerativa e invarianti di Gromov-Witten
Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] ci si limita al caso in cui le singolarità di C siano 'nodi'. Un nodo è un punto p=(a,b)∈C in cui lo sviluppo in serie di Taylor del polinomio P che definisce C è della forma
[9] P(z,w)=α(z−a)2+β(z−a)(w−b)+γ(w−b)2+…
e in cui il discriminante β2−4αγ ...
Leggi Tutto
CHERUBINO, Salvatore
Francesco Saverio Rossi
Nato a Napoli il 3 giugno 1885 da Alessandro e Stella Europeo, in una famiglia non abbiente, compì gli studi medi nel 1903 frequentando gli istituti tecnici [...] R. Acc. naz. d. Lincei, cl. di sc. fisiche, s. 6, IX [1929], pp. 283-87); inoltre Su le forme associate ai polinomi (in Rendiconti d. Seminario matematico d. R. Università di Padova, II [1931], 2, pp. 80-107).
Al C. si devono inoltre testi didattici ...
Leggi Tutto
NUMERICI CALCOLI (XXV, p. 29)
Enzo APARO
Generalità. - Il concetto di calcolo numerico si può introdurre da un punto di vista generale, come segue. Un insieme finito di oggetti, un insieme finito di [...] (i), s(i) convergono a due numeri r, s, tali che z2 + rz + s risulta un divisore di f(z).
Metodo di Bernoulli. - Sia
un polinomio a coefficienti reali, e sia ao = 1. Distinguiamo due casi: nel caso 1), dette αi (i = 1,..., r) le radici di f(z) = o, a ...
Leggi Tutto
L'Ottocento: matematica. Teoria degli invarianti
Leo Corry
Teoria degli invarianti
L'algebra del XIX sec. ebbe uno sviluppo intenso che coprì numerosi domini. Nuove entità matematiche come gruppi, anelli [...] hessiano:
Da considerazioni puramente geometriche sui punti di flesso della curva di equazione f=0 (f è in questo caso un polinomio omogeneo), Hesse, che non conosceva i risultati di Boole, dimostrò nel 1844 che se f si trasforma in T(f), allora ...
Leggi Tutto
ASCOLI, Guido
Nicola Virgopia
Nato a Livorno il 12 dic. 1887, studiò a Pisa e ivi si laureò a soli 20 anni (1907) svolgendo con L. Bianchi una tesi di laurea sulle singolarità delle funzioni analitiche. [...] lavori: Funzioni sferiche e sistemi ortogonali, in Period. di Matem., XXVI (1910), pp. 105-110: vengono definiti i polinomi sferici e studiati in base alle loro proprietà ortogonali; Complementi di Geometria per gli Istituti tecnici, Livorno 1913 ...
Leggi Tutto
Laplace Pierre-Simon de
Laplace 〈laplàs〉 (in origine La Place) Pierre-Simon de (questa particella viene quasi sempre fatta cadere) [STF] (Beaumont-en-Auge, Calvados, 1749 - Parigi 1827) Prof. di matematica [...] e δ è la sua aggiunta, è l'operatore ∇2=dδ+δd: v. forme differenziali: II 689 e. ◆ [ANM] Polinomi di L.: polinomi armonici omogenei. ◆ [GFS] Punti di L.: nella geodesia, punti della superficie terrestre vertici di una triangolazione nei quali, oltre ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La scuola di geometria algebrica italiana
Alberto Conte
Ciro Ciliberto
La scuola di geometria algebrica italiana
Gli inizi: Luigi Cremona e [...] che si annullano sulla curva C, ossia la dimensione hC(d), per ogni intero positivo d, dello spazio vettoriale dei polinomi omogenei di grado d che si annullano su C. Queste ricerche furono proseguite da Fano, nel 1894, nella sua dissertazione ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. L'analisi numerica
Paolo Zellini
L'analisi numerica
L'analisi numerica moderna comincia a delinearsi verso la metà del XX sec., con le prime [...] xn, per es., 2, 3, 4, 7, 8, 15, 16, 31 per n=31). Nel 1954 Ostrowski si chiese per primo se il metodo di Horner-Ruffini per calcolare un polinomio avesse complessità minima. Negli anni Cinquanta venne quindi introdotto un modello per il calcolo di un ...
Leggi Tutto
Chimica
Scissione di una sostanza in costituenti sempre più semplici, fino a quelli elementari; è l’inverso della combinazione. La d. di un composto può essere provocata dal calore, dalla luce, dalla corrente [...] ; tale rappresentazione è unica (a meno dell’ordine dei fattori).
Decomposizione di un polinomio in fattori irriducibili
Operazione consistente nel rappresentare un polinomio (in una o più indeterminate), i cui coefficienti appartengono a un corpo K ...
Leggi Tutto
polinomio
polinòmio s. m. [comp. di poli- e -nomio di binomio]. – In matematica, somma di monomî (in senso proprio, solo con riferimento a monomî interi), detti termini del polinomio: binomio, trinomio, quadrinomio, ecc., è un polinomio rispettivam....
fattore
fattóre s. m. [lat. factor -ōris, der. di facĕre, part. pass. factus]. – 1. letter. Chi fa, facitore, creatore: i f. dell’unità italiana, coloro che più hanno contribuito a farla; si dice in partic. di Dio (cfr. il più com. creatore):...