polinomi ortogonali
Alfio Quarteroni
Si consideri lo spazio vettoriale ℙn dei polinomi algebrici di grado minore o uguale a n e sia w:(a,b)→ℝ una funzione peso, ovvero una funzione non negativa e assolutamente [...] k≥1. Se invece, sempre sull’intervallo [−1, 1] si considera la funzione peso w(x)= =(1−x2)−1/2, si ottiene la famiglia dei polinomi di Chebyshev Tk(x)=cos(kθ), con θ=arccos x, per k≥0 che soddisfa la relazione ricorsiva a tre termini T0(x)≡1, T1(x)=x ...
Leggi Tutto
algebrico
algèbrico [agg. (pl.m. -ci) Der. di algebra] [ALG] Qualifica di ente matematico la cui definizione è connessa con polinomi a coefficienti in un campo numerico (polinomi a.). ◆ [ANM] Curva piana [...] le cui coordinate verificano un'equazione a. in due variabili. ◆ [ANM] Equazione a.: quella ottenuta uguagliando a zero un polinomio a. in due o più variabili. ◆ [ALG] Espressione a.: ogni scrittura in cui compaiono numeri, simboli letterali e ...
Leggi Tutto
Bernstein Benjamin Abram
Bernstein 〈bèrnstain〉 Benjamin Abram [STF] (Posvol, Lituania, 1881 - Berkeley, California 1968) Prof. di matematica nell'univ. di Berkeley (1928). ◆ [ANM] Polinomi di B.: introdotti [...] di B. relativo a f(x) e a I è Bn(x)=Σk=nk=0 [f(k/n)] (nk)xk(1-x)n-k. I polinomi di B. relativi a una funzione f(x) costituiscono una successione che converge uniformemente a f(x), e anche la successione delle loro derivate di un ordine qualsiasi ...
Leggi Tutto
Hermite Charles
Hermite 〈ermìt〉 Charles [STF] (Dieuze 1822 - Parigi 1901) [STF] Prof. di analisi matematica alla Sorbona (1869) e poi nell'École Polytechnique (1878); socio straniero dei Lincei (1883). [...] oltre: Funzioni di H.): v. equazioni differenziali ordinarie nel campo reale: II 459 a. ◆ [ANM] Funzioni di H.: le funzioni Ln(x)= exp(-x2/2)Hn(x), dove Hn(x) è il polinomio di H. di ordine n (con n intero), cioè Hn(x)=(-1)n exp(x2) dnexp(-x2)/dxn. I ...
Leggi Tutto
Schur Issai
Schur 〈šur〉 Issai [STF] (n. 1875 - m. 1941) Prof. di matematica nell'univ. di Bonn (1913), poi di Berlino. ◆ [ALG] Lemma di S.: v. gruppi di Lie: III 116 d. ◆ [ALG] Polinomi di S.: v. gruppi, [...] rappresentazione dei: III 125 c. ◆ [ANM] Teoria simmetrica dei tensori di S.-Young: è la teoria delle rappresentazioni dei gruppi di rotazione: v. gruppi, rappresentazione dei: III 123 c ...
Leggi Tutto
Chebyshev Pafnutij L'vovic
Chebyshev (o Chebishev o Tchebyschef) 〈chibishòf〉 Pafnutij L'vovic [STF] (Okatovo 1821 - Pietroburgo 1894) Prof. di analisi matematica nell'univ. di Pietroburgo (1847). ◆ Disuguaglianza [...] la curva di attenuazione di un tale filtro, del tipo passa-basso (ft è la frequenza di taglio). ◆ [ANM] Nodi di Ch.: gli zeri dei polinomi di Ch. (v. oltre) Tn(x), dati dalla formula xr=cos[(2r-1)π/(2n)], con r=1, ..., n; sono tutti reali, distinti e ...
Leggi Tutto
somma
sómma [Der. del lat. summa "il punto più alto", f. sostantivato dell'agg. summus "sommo"] [ALG] Il risultato dell'operazione di addizione di numeri naturali (s. aritmetica), di numeri con segno [...] (s. algebrica), di espressioni algebriche (monomi e polinomi), di segmenti, di angoli, ecc. (s. geometrica), di vettori (s. vettoriale o composizione), di matrici, ecc. ◆ [ALG] S. di ideali: indicati con B, C due ideali di un anello A, si chiama s. ...
Leggi Tutto
formule di Newton-Cotes
Alfio Quarteroni
Per calcolare numericamente l’integrale definito I(f)=∫∮]] f (x)dx, le formule di Newton-Cotes si ottengono sostituendo la funzione integranda f(x) con un polinomio [...] in [a,b]. Se indichiamo con {x}}{[}=0 i nodi di interpolazione e con {L}(x)}{[}=0 i polinomi di Lagrange di grado n definiti sui nodi {x}}, ovvero dei polinomi algebrici di grado n tali che L∥(x})=δ∥} per i,j=0,…,n, l’approssimazione del valore I ...
Leggi Tutto
resto
rèsto [Der. di restare, dal lat. restare, comp. di re- "di nuovo" e stare "stare"] [LSF] Ciò che rimane di un tutto. ◆ [ALG] R. della divisione: (a) fra numeri interi: il numero che, sommato al [...] per il divisore, dà il dividendo; (b) fra polinomi: quel polinomio, di grado inferiore a quello del polinomio divisore, che, sommato al prodotto del polinomio quoziente con quello divisore, dà il polinomio dividendo. ◆ [ANM] R. n-esimo di una serie ...
Leggi Tutto
trascendente
trascendènte [agg. Der. del part. pres. trascendens -entis del lat. trascendere "oltrepassare", comp. di trans- "oltre" e scandere "salire"] [ANM] Di qualsiasi ente che non sia algebrico. [...] ] Funzione t.: ogni funzione non algebrica, nella quale cioè la relazione tra le variabili non possa essere espressa mediante polinomi nelle variabili stesse, come sono (storicamente furono le prime) la funzione logaritmica e la sua inversa (funzione ...
Leggi Tutto
polinomio
polinòmio s. m. [comp. di poli- e -nomio di binomio]. – In matematica, somma di monomî (in senso proprio, solo con riferimento a monomî interi), detti termini del polinomio: binomio, trinomio, quadrinomio, ecc., è un polinomio rispettivam....
fattore
fattóre s. m. [lat. factor -ōris, der. di facĕre, part. pass. factus]. – 1. letter. Chi fa, facitore, creatore: i f. dell’unità italiana, coloro che più hanno contribuito a farla; si dice in partic. di Dio (cfr. il più com. creatore):...