GEOMETRIA ALGEBRICA
Ciro Ciliberto
Igor R. Shafarevich
Lo sviluppo delle idee di Ciro Ciliberto
Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] d > 0. L'intero d è detto ‛grado' di X. Per esempio, il grado di un'ipersuperficie determinata da un polinomio irriducibile è uguale al grado del polinomio. Ora, se X e Y sono curve proiettive irriducibili in P2 di gradi m e n, allora X = mL, Y ...
Leggi Tutto
Invarianti, Teoria degli
Claudio Procesi
La geometria proiettiva, e le geometrie non euclidee, ebbero un grande impatto sul pensiero algebrico e geometrico del secolo scorso. Le idee scaturite da questa [...] è data da un gruppo di riflessioni e per tali gruppi Chevalley stesso mostra (1955) che gli invarianti sono un'algebra di polinomi i cui gradi sono noti. Seguendo le idee di Harish-Chandra (che in parte sono già in Capelli), la struttura di questi ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica
Jeremy Gray
Geometria algebrica
Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] quadro generale tracciato dallo stesso Artin. Sia K un campo finito con q=pn elementi e K(t) un campo di funzioni su K. I polinomi sono gli interi razionali di questo campo. Vi è una stretta analogia tra K(t) e K[t] da una parte, e ℚ e ℤ dall'altra ...
Leggi Tutto
Superficie algebrica irriducibile d’ordine n, avente un punto P di molteplicità n−1; essa è razionale e le sue equazioni parametriche razionali si ottengono intersecandola con una retta generica per P, [...] , quando P coincida con l’origine delle coordinate, è Ψn(x, y, z)+Ψn–1(x, y, z)=0 ove Ψn, Ψn–1 sono polinomi omogenei di grado n, n−1. Il concetto di m. si estende alle ipersuperfici degli iperspazi. Il più semplice esempio di m. è fornito da ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo
Jean-Paul Pier
Il Bourbakismo
L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] infinito. Intervengono in seguito le frazioni razionali e le funzioni razionali. Il differenziale e la derivata sono studiati per polinomi e frazioni razionali in un numero finito di variabili su un anello commutativo con identità; si precisa qui la ...
Leggi Tutto
Geometria differenziale
SShoshichi Kobayashi
di Shoshichi Kobayashi
Geometria differenziale
sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] gruppo di matrici ortogonali n×n con determinante 1 e sia so(n) la sua algebra di Lie costituita da matrici n×n antisimmetriche. Sia f un polinomio omogeneo di grado r definito su so(n) e invariante in questo senso:
f(UXU-1)=f(X) per X∈so(n) e U∈SO(n ...
Leggi Tutto
Sistemi dinamici
Franco Magri
Dmitrij Anosov
Il concetto di sistema è presente nel dibattito scientifico degli ultimi decenni nelle più diverse discipline: dall'idea di sistema fisico a quella di ecosistema, [...] λ. Se la dimensione dello spazio delle fasi è dispari, diciamo dim H=2n+1, si può scegliere C(x,λ) nella forma di un polinomio di grado n in λ:
In questo modo il fascio di Poisson fornisce una famiglia di n +1 funzioni (C₀(x),...,Cn(x)). Fissiamo ...
Leggi Tutto
La grande scienza. Geometria numerativa e invarianti di Gromov-Witten
Enrico Arbarello
Geometria numerativa e invarianti di Gromov-Witten
Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] ci si limita al caso in cui le singolarità di C siano 'nodi'. Un nodo è un punto p=(a,b)∈C in cui lo sviluppo in serie di Taylor del polinomio P che definisce C è della forma
[9] P(z,w)=α(z−a)2+β(z−a)(w−b)+γ(w−b)2+…
e in cui il discriminante β2−4αγ ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La scuola di geometria algebrica italiana
Alberto Conte
Ciro Ciliberto
La scuola di geometria algebrica italiana
Gli inizi: Luigi Cremona e [...] che si annullano sulla curva C, ossia la dimensione hC(d), per ogni intero positivo d, dello spazio vettoriale dei polinomi omogenei di grado d che si annullano su C. Queste ricerche furono proseguite da Fano, nel 1894, nella sua dissertazione ...
Leggi Tutto
L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea
Jeremy Gray
Dalla geometria proiettiva alla geometria euclidea
La geometria proiettiva
La carriera del matematico francese [...] scoprirono che era spesso più semplice applicare il calcolo a curve meccaniche che non a curve definite da complicati polinomi.
Ciò che distingueva le curve algebriche dalle altre non era la semplicità della loro definizione, ma la facilità con ...
Leggi Tutto
polinomio
polinòmio s. m. [comp. di poli- e -nomio di binomio]. – In matematica, somma di monomî (in senso proprio, solo con riferimento a monomî interi), detti termini del polinomio: binomio, trinomio, quadrinomio, ecc., è un polinomio rispettivam....
fattore
fattóre s. m. [lat. factor -ōris, der. di facĕre, part. pass. factus]. – 1. letter. Chi fa, facitore, creatore: i f. dell’unità italiana, coloro che più hanno contribuito a farla; si dice in partic. di Dio (cfr. il più com. creatore):...