Logica matematica
Abraham Robinson
*La voce enciclopedica Logica matematica è stata ripubblicata da Treccani Libri, arricchita e aggiornata da un’introduzione di Gabriele Lolli e un saggio di Beppo [...] di problemi proposti da D. Hilbert nel 1900, il decimo richiede un procedimento effettivo per poter decidere se, per un dato pòlinomio a coefficienti interi, p(x1, ..., xn), esistano o no degli interi a1, ..., an tali che p(a1, ..., an)=0.
Sebbene il ...
Leggi Tutto
L'Ottocento: fisica. Raggi e onde luminosi
Jed Z. Buchwald
Raggi e onde luminosi
Dal XVII al XIX sec., due immagini fisiche fondamentali dominarono la speculazione e, talvolta, persino la matematizzazione [...] la loro presenza come espressione, a livello fondamentale, della fisica sottostante: gli integrali di Fresnel, a differenza dei polinomi di Legendre in astronomia o delle serie di Fourier nei processi termici, non erano stati affatto ottenuti come ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. La matematica ebraica
Tony Lévy
La matematica ebraica
Gli studiosi ebrei arabofoni che vivevano nei paesi dell'Islam rappresentavano una [...] dell'algebra (in ebraico si usa l'espressione hašlāmāh we-haqbālāh) e le operazioni aritmetiche sui monomi e sui polinomi (addizione, sottrazione, moltiplicazione e divisione). Quest'ultima parte indica che l'opera araba che era stata utilizzata come ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. Geometria pratica
Hélène Bellosta
Geometria pratica
Nella classificazione delle scienze di al-Fārābī figura la categoria dei 'procedimenti [...] di calcolo di AH, altezza relativa al lato BC, ponendo BH=x (la 'cosa') e utilizzando le regole di calcolo sui polinomi di grado inferiore o uguale a 2 descritte nella prima parte del trattato. I suoi successori preferiranno per la maggior parte dare ...
Leggi Tutto
La grande scienza. Combinatoria
Peter J. Cameron
Combinatoria
Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] ovvero che 'la classe è in P', se ognuno dei problemi della classe è risolvibile in un numero di passi maggiorato da un polinomio nelle dimensioni dell'input. Una classe è in NP se si ha lo stesso risultato ammettendo un certo numero di tentativi di ...
Leggi Tutto
La grande scienza. Teoria dei numeri
Anatolij A. Karatsuba
Teoria dei numeri
La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] ⟨0. Nel 1909 Axel Thue dimostrò che ϑ≤(n/2)+1, e da ciò segue che se f(z)=azn+bzn−1+…+cz+d è un polinomio irriducibile nel campo dei numeri razionali, a coefficienti interi e di ordine n≥3, allora l'equazione diofantea
[25] ayn+byn-1x+…+cyxn-1+dxn=l ...
Leggi Tutto
La civilta islamica: condizioni materiali e intellettuali. Algebra e linguistica. Gli inizi dell'analisi combinatoria
Roshdi Rashed
Algebra e linguistica. Gli inizi dell'analisi combinatoria
Intorno [...] triangolo, la sua regola di formazione e il teorema del binomio e vederli come strumenti matematici necessari per l'algebra dei polinomi, per l'estrazione della radice n-esima di un intero, ecc. e altra cosa è considerarli come elementi di una nuova ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale
Jeremy Gray
Geometria differenziale
La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] da Weil. Data una varietà n-dimensionale M, il teorema di Chern-Weil stabilisce un omomorfismo dall'insieme dei polinomi invarianti all'anello delle matrici reali n × n. L'immagine di questo omomorfismo è l'insieme delle classi caratteristiche ...
Leggi Tutto
Fiore, IL
Gianfranco Contini
Poemetto da alcuni critici attribuito a D., mentre la paternità è da altri, e soprattutto era un tempo, energicamente contrastata. E contenuto esclusivamente in un manoscritto [...] la coppia di personificazioni che nel F. costituisce il primo segmento viene inserita nel grande raggruppamento di coppie o polinomi di astrazioni, più o meno ipostatizzate, che abbondano e nel Fiore (LXXXIV, CXXXVI, CXXXVII, CCXXVI) e nelle Rime (Cv ...
Leggi Tutto
L'Eta dei Lumi: matematica. Le tradizioni principali della meccanica
Ivor Grattan-Guinness
Le tradizioni principali della meccanica
Branche della meccanica
La meccanica, nel suo ampio spettro di usi, [...] alla teoria delle serie e alla teoria delle funzioni (nel XIX sec., quelli che sarebbero stati chiamati 'polinomi di Legendre' si chiamavano 'funzioni di Laplace'). Alcune delle importanti innovazioni da lui introdotte nella matematica statistica ...
Leggi Tutto
polinomio
polinòmio s. m. [comp. di poli- e -nomio di binomio]. – In matematica, somma di monomî (in senso proprio, solo con riferimento a monomî interi), detti termini del polinomio: binomio, trinomio, quadrinomio, ecc., è un polinomio rispettivam....
fattore
fattóre s. m. [lat. factor -ōris, der. di facĕre, part. pass. factus]. – 1. letter. Chi fa, facitore, creatore: i f. dell’unità italiana, coloro che più hanno contribuito a farla; si dice in partic. di Dio (cfr. il più com. creatore):...