• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
il chiasmo
lingua italiana
154 risultati
Tutti i risultati [154]
Matematica [64]
Geometria [25]
Algebra [21]
Fisica [19]
Temi generali [18]
Fisica matematica [17]
Storia della matematica [14]
Analisi matematica [12]
Biografie [10]
Ingegneria [7]

Geometria differenziale

Enciclopedia del Novecento (1978)

Geometria differenziale SShoshichi Kobayashi di Shoshichi Kobayashi Geometria differenziale sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] lo spazio tangente Tp(M) è considerato come un piano n-dimensionale in RN e la struttura euclidea di RN Kähhler Φ è chiusa, cioè se dΦ=0. Possiamo costruire sullo spazio proiettivo Pn(C) una metrica di Kähler usando le coordinate locali z1, ..., zn ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – FUNZIONI DI VARIABILE COMPLESSA – REGIONE SEMPLICEMENTE CONNESSA – CALCOLO DIFFERENZIALE ASSOLUTO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

geometria algebrica

Enciclopedia della Matematica (2013)

geometria algebrica geometria algebrica variante moderna e più astratta della geometria analitica; dato il peso prevalente assegnato alle strutture algebriche (quali, in particolare, anelli, campi e [...] Z1 ∩ Z2. Per esempio, nel caso in cui Z è una curva nel piano affine definita da un’equazione p(x, y) = 0, l’irriducibilità equivale ogni punto p di una varietà algebrica X (affine o proiettiva) è possibile associare un anello locale Ap. In tale ... Leggi Tutto
TAGS: SCUOLA ITALIANA DI GEOMETRIA ALGEBRICA – DOMINIO A FATTORIZZAZIONE UNICA – TEOREMA DEGLI ZERI DI HILBERT – CAMPO ALGEBRICAMENTE CHIUSO – CORRISPONDENZA BIUNIVOCA
Mostra altri risultati Nascondi altri risultati su geometria algebrica (2)
Mostra Tutti

STORIA DELLA MATEMATICA

Enciclopedia della Matematica (2013)

STORIA DELLA MATEMATICA Luigi Borzacchini STORIA DELLA MATEMATICA Il tempo della scienza senza tempo La matematica è la più antica e la più immutabile delle discipline. Si può dire che la matematica [...] e un solo punto (al finito o all’infinito)». Qualcosa di analogo accade nella dualità tra variabili e parametri: la retta nel piano proiettivo aX + bY + cZ = 0 (a, b, c, fissati e X, Y, Z variabili) può anche essere letta dualmente come il fascio di ... Leggi Tutto
TAGS: PHILOSOPHIAE NATURALIS PRINCIPIA MATHEMATICA – METODO DEI MOLTIPLICATORI DI LAGRANGE – ACCADEMIA DELLE SCIENZE DI BERLINO – TEOREMA FONDAMENTALE DELL’ALGEBRA – MEDITATIONES DE PRIMA PHILOSOPHIA

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea

Storia della Scienza (2003)

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea Jeremy Gray Dalla geometria proiettiva alla geometria euclidea La geometria proiettiva La carriera del matematico francese [...] che trasformano la conica in sé. La geometria affine piana si ottiene eliminando una retta dal piano proiettivo e considerando soltanto le trasformazioni proiettive che trasformano quella retta in sé. La geometria euclidea è associata con una ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

La grande scienza. Combinatoria

Storia della Scienza (2003)

La grande scienza. Combinatoria Peter J. Cameron Combinatoria Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] sono aperti. (a) Esiste un sistema di Steiner S(t,k,v) con t≥6? (b) Un piano proiettivo di ordine n è un sistema di Steiner S(2,n+1,n2+ +n+1). Esiste un piano proiettivo di ordine che non sia una potenza di un primo? (Un esempio di ordine n, se n è ... Leggi Tutto
CATEGORIA: ALGEBRA

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten

Storia della Scienza (2003)

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten Enrico Arbarello Geometria numerativa e invarianti di Gromov-Witten Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] [21]  [V1]…[Vk] = ∫VωV1⋀…⋀ωVk . Per esempio, ritornando al caso in cui la varietà ambiente V è il piano proiettivo complesso ℙ2 con coordinate proiettive X, Y, Z, si consideri come sottovarietà la retta L di equazione Z = 0. Si verifica che la classe ... Leggi Tutto
CATEGORIA: GEOMETRIA

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica Jeremy Gray Geometria algebrica Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] e campi di funzioni razionali. Superfici non isomorfe possono avere lo stesso campo di funzioni. Per esempio, il piano proiettivo ℂℙ2 e una quadrica non degenere (che si può considerare come ℂℙ1×ℂℙ1) sono superfici birazionalmente equivalenti, e ... Leggi Tutto
CATEGORIA: GEOMETRIA – STATISTICA E CALCOLO DELLE PROBABILITA

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria differenziale Jeremy Gray Geometria differenziale La geometria differenziale è lo studio dei problemi geometrici mediante i metodi [...] delle figure. Un secondo esempio è quello della geometria proiettiva. Si può estendere il piano aggiungendo una retta e ottenere il gruppo delle proiezioni di questo piano 'proiettivo' in sé. Tale gruppo conserva pochissime proprietà delle figure ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

MONTESANO, Domenico Alfonso Emmanuele

Dizionario Biografico degli Italiani (2012)

MONTESANO, Domenico Alfonso Emmanuele Romano Gatto MONTESANO, Domenico Alfonso Emmanuele. – Nacque a Potenza il 22 dicembre 1863 dall’avvocato Leonardantonio, fervente liberale che nel 1860 era stato [...] 1444). Contemporaneamente affrontò il problema della classificazione delle involuzioni dello spazio. Le trasformazioni involutorie nel piano proiettivo erano state completamente studiate e caratterizzate da Eugenio Bertini in una memoria del 1877, ma ... Leggi Tutto
TAGS: ORDINE DEGLI AVVOCATI – ACADÉMIE DES SCIENCES – UNIVERSITÀ DI NAPOLI – ACCADEMIA DEI LINCEI – GIUSEPPE BATTAGLINI
Mostra altri risultati Nascondi altri risultati su MONTESANO, Domenico Alfonso Emmanuele (1)
Mostra Tutti

Hilbert, problemi di

Enciclopedia della Matematica (2017)

Hilbert, problemi di Hilbert, problemi di lista di problemi (23 in tutto), all’epoca irrisolti, esposti in parte da D. Hilbert nel 1900, in occasione del secondo Congresso internazionale dei matematici [...] divide in due questioni. La prima riguarda la topologia delle varietà algebriche reali: per esempio, una curva algebrica reale nel piano proiettivo si divide in un certo numero di ovali e il problema che si pone è quello di quali configurazioni siano ... Leggi Tutto
TAGS: SISTEMA DI ASSIOMI DI → ZERMELO-FRAENKEL – TEOREMA DI INCOMPLETEZZA DI GÖDEL – EQUAZIONE DIFFERENZIALE LINEARE – EQUAZIONE DI EULERO-LAGRANGE – TEOREMA DI → KRONECKER-WEBER
1 2 3 4 5 6 7 8 ... 16
Vocabolario
proiettivo
proiettivo agg. [der. del lat. proiectus: v. proietto]. – 1. Genericam., che proietta, che ha forza di proiettare, che ha rapporto con una proiezione. In matematica, relativo all’operazione di proiezione (e anche a quella di sezione) e alle...
piano²
piano2 piano2 s. m. [lat. planum «pianura» (propr. neutro sostantivato dell’agg. planus: v. la voce prec.); nel sign. 7 ricalca il fr. plan] (pl. ant. le piànora). – 1. Superficie piana, generalm. orizzontale, ma anche verticale o variamente...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali