• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
25 risultati
Tutti i risultati [259]
Analisi matematica [25]
Matematica [99]
Fisica [54]
Temi generali [36]
Fisica matematica [31]
Algebra [32]
Ingegneria [21]
Economia [23]
Informatica [22]
Meccanica quantistica [17]

operatori lineari

Enciclopedia della Scienza e della Tecnica (2008)

operatori lineari Luca Tomassini Un’appli­cazione A:E→F di uno spazio lineare E in uno spazio lineare F (anche coincidente con E) su un campo K (che qui identificheremo con i numeri complessi ℂ) tale [...] A. Non sempre D(A)=E, ma faremo questa assunzione nel seguito. Con questa semplificazione, le nozioni di somma e prodotto di operatori lineari sono definite in modo ovvio. L’insieme degli x∈E tali che Ax=0 è detto nucleo di A e si indica KerA ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: OPERATORI LINEARI CONTINUI – SPAZIO VETTORIALE – ALGEBRA DI BANACH – FUNZIONE CONTINUA – NUMERI COMPLESSI
Mostra altri risultati Nascondi altri risultati su operatori lineari (2)
Mostra Tutti

operatori compatti

Enciclopedia della Scienza e della Tecnica (2008)

operatori compatti Luca Tomassini Operatori lineari su uno spazio di Hilbert ℋ vicini in un senso opportuno agli operatori di dimensione finita, ovvero agli operatori che mandano ℋ in un sottospazio [...] la cui chiusura nella topologia indotta dal prodotto scalare è compatta. In uno spazio di Hilbert a dimensione finita ogni operatore lineare è compatto, poiché trasforma ogni insieme limitato in uno limitato e in un tale spazio la chiusura di ogni ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: OPERATORE COMPATTO – OPERATORE IDENTITÀ – ANALISI MATEMATICA – SPAZIO DI HILBERT – OPERATORE LINEARE

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] semplice è dato da per ϕ ∈ R, che descrive la rotazione dello spazio euclideo R2 di ϕ gradi in senso positivo. c) Operatori lineari positivi Sia E un qualsivoglia spazio vettoriale su R o su C e sia dim E = n ∈ N allora, attraverso la scelta ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] valori ∥A(x)∥, per ∥x∥≤1 viene denotato con ∥A∥ e chiamato norma di A. L'insieme di tutti gli operatori lineari A da X in Y forma effettivamente uno spazio lineare normato. Inizialmente l'importanza di questo risultato non venne compresa. Piuttosto ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Analisi matematica

Enciclopedia della Scienza e della Tecnica (2007)

Analisi matematica Jean A. Dieudonné Alcune delle idee fondamentali che sono alla base del calcolo risalgono ai Greci, ma il loro sviluppo sistematico iniziò soltanto nel XVII secolo. Alla fine di quel [...] decisivo nello sviluppo dell'analisi fu compiuto nel 1922 da Stefan Banach con la creazione della teoria degli operatori lineari in spazi lineari, normati e completi rispetto alla norma, i cosiddetti spazi di Banach. Per esempio, se si considera un ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – TEOREMA DI APPROSSIMAZIONE DI WEIERSTRASS – EQUAZIONI DIFFERENZIALI ORDINARIE – EQUAZIONE INTEGRALE DI VOLTERRA – SPAZIO VETTORIALE TOPOLOGICO
Mostra altri risultati Nascondi altri risultati su Analisi matematica (4)
Mostra Tutti

Equazioni differenziali: problemi non lineari

Enciclopedia della Scienza e della Tecnica (2007)

Equazioni differenziali: problemi non lineari Jean Mawhin La modellizzazione di molti problemi fisici porta alla ricerca di soluzioni di equazioni differenziali di secondo ordine, ordinarie o alle derivate [...] soluzione (forte) u∈W02,p(Ω). L'inclusione compatta di C2,α(Ω_) in C1,α(Ω_) e di W02,p(Ω) in W01,p(Ω) implica che gli operatori lineari K1: C0,α(Ω_)→C1,α(Ω_) e K2: Lp(Ω)→W1,p(Ω) che associano a ogni h l'unica soluzione u di [22] sono compatti. Non ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONE ALLE DERIVATE PARZIALI – TEOREMA DI ESISTENZA DEGLI ZERI – DIMOSTRAZIONE PER ASSURDO – TEOREMA DELLA DIVERGENZA
Mostra altri risultati Nascondi altri risultati su Equazioni differenziali: problemi non lineari (2)
Mostra Tutti

traccia

Enciclopedia della Scienza e della Tecnica (2008)

traccia Luca Tomassini Nel caso di un operatore lineare (matrice quadrata) di uno spazio vettoriale euclideo n-dimensionale in sé A=∣∣aij∣∣ (con aij numeri complessi e i,j=1,...,n), la traccia di A [...] di prodotto scalare (di Hilbert) ℋ si è dimostrata uno strumento fondamentale nello studio delle sottoalgebre dell’algebra degli operatori lineari limitati su di essi B(ℋ). Un primo metodo procede direttamente dalla definizione precedente. Se A è un ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
TAGS: SPAZIO VETTORIALE EUCLIDEO – OPERATORE HERMITIANO – SPAZIO DI HILBERT – OPERATORE LINEARE – PRODOTTO SCALARE
Mostra altri risultati Nascondi altri risultati su traccia (4)
Mostra Tutti

generatore di un semigruppo

Enciclopedia della Scienza e della Tecnica (2008)

generatore di un semigruppo Luca Tomassini Siano X uno spazio di Banach con norma ∣∣∙∣∣ e B(X) l’insieme degli operatori continui su di esso. Si dice semigruppo di operatori {T(t)∣t≥0} una famiglia [...] con la risoluzione di problemi di evoluzione. La relazione tra generatori e relativi semigruppi è completamente chiarita nel caso di operatori lineari dal teorema di Hille-Yosida. Più precisamente, T(t) ha un generatore A=A0 (in questo caso un ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: SPAZI VETTORIALI TOPOLOGICI – OPERATORI CONTINUI – OPERATORE LINEARE – SPAZIO DI BANACH – SPAZI VETTORIALI

anàlisi

Dizionario delle Scienze Fisiche (1996)

analisi anàlisi [Der. del gr. análysis "scomporre in elementi"] [LSF] Scomposizione di un tutto, concreto o astratto, nelle parti che lo costituiscono, soprattutto a scopo di studio; si oppone a sintesi, [...] : v. gruppo di Poincaré: III 130 e. ◆ [ANM] A. lineare: la parte dell'a. matematica che studia gli operatori lineari; il suo sviluppo è dovuto all'estensione dei risultati fondamentali dell'algebra lineare agli spazi a dimensione infinita. ◆ [ANM] A ... Leggi Tutto
CATEGORIA: TEMI GENERALI – BIOFISICA – ELETTROLOGIA – FISICA MATEMATICA – FISICA TECNICA – GEOFISICA – MECCANICA – MECCANICA DEI FLUIDI – OTTICA – ANALISI MATEMATICA – STATISTICA E CALCOLO DELLE PROBABILITA – ELETTRONICA – MECCANICA APPLICATA

teoria dei semigruppi

Enciclopedia della Scienza e della Tecnica (2008)

teoria dei semigruppi Luca Tomassini Un semigruppo è un insieme con una operazione binaria * (comunemente detta moltiplicazione) che soddisfi la proprietà associativa: a*(b*c)=(a*b)*c. Un semigruppo [...] quali gli spazi vettoriali topologici o anche di Banach. In questo caso si parla di teoria dei semigruppi di operatori (lineari o non linerari) e il suo sviluppo ha costituito uno stimolo essenziale alla crescita dell’analisi funzionale. Il risultato ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA
1 2 3
Vocabolario
linearismo
linearismo s. m. [der. di lineare1]. – 1. Nella terminologia critica delle arti figurative, la tendenza a far prevalere la linea su ogni altro elemento di un’opera pittorica o grafica, e spec. sul chiaroscuro e sulle gradazioni del colore....
réte
rete réte s. f. [lat. rēte]. – 1. Intreccio di fili di materiale vario, incrociati e annodati tra loro regolarmente in modo che restino degli spazî liberi, detti maglie: il materiale (canapa, sparto, cocco e altre fibre vegetali; fibre artificiali;...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali