• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
13 risultati
Tutti i risultati [197]
Storia della matematica [13]
Matematica [53]
Fisica [49]
Biologia [22]
Temi generali [22]
Medicina [16]
Analisi matematica [19]
Fisica matematica [17]
Ingegneria [14]
Storia della fisica [14]

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le origini dell'analisi funzionale Angus E. Taylor Le origini dell'analisi funzionale L'analisi funzionale acquista una precisa identità nel [...] e, nel corso di tale progetto, a formulare il concetto di compattezza. Hadamard cercava di definire un metodo per rappresentare analiticamente un qualsiasi operatore lineare continuo sullo spazio C[a,b]. Nel 1903 egli riuscì a dimostrare che un tale ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Equazioni differenziali alle derivate parziali Haïm Brezis Felix Browder Equazioni differenziali alle derivate parziali Lo studio delle equazioni [...] tutti gli ordini entro quella classe. In particolare, ogni funzione continua (non necessariamente differenziabile nel senso usuale) ammette derivata in Se è un operatore differenziale lineare a coefficienti lisci, allora L(T) è ben definita per ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La grande scienza. Cronologia scientifica: 1961-1970

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1961-1970 1961-1970 1961 Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] Singer scoprono l'uguaglianza tra l'indice di un operatore ellittico su una varietà differenziabile compatta, il suo indice ∥2 ‒ se K⊂V è convesso non vuoto, e v→(f,v) una forma lineare continua su V, allora esiste un unico u∈K tale che a(u,v−u)≥(f,u ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – ANTROPOLOGIA FISICA – STORIA DELLA BIOLOGIA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA

La grande scienza. Cronologia scientifica: 1951-1960

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1951-1960 1951-1960 1951 Sui gruppi di omotopia e di omologia. In una serie di articoli (Homologie singulière des espaces fibrés) Jean-Pierre Serre fornisce [...] assiale di una bobina toroidale percorsa da corrente continua. · Operativa la prima centrale nucleotermoelettrica statunitense. La centrale trietilalluminio. Il polimero è caratterizzato da una struttura più lineare, da una più alta densità e da una ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – ANTROPOLOGIA FISICA – BIOCHIMICA – STORIA DELLA BIOLOGIA – CHIMICA FISICA – STORIA DELLA CHIMICA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA

L'Ottocento: matematica. Le origini della teoria dei gruppi

Storia della Scienza (2003)

L'Ottocento: matematica. Le origini della teoria dei gruppi Jeremy Gray Le origini della teoria dei gruppi La teoria di Galois e la soluzione algebrica delle equazioni algebriche La teoria di Galois [...] che Gauss dimostra essere risolubile con l'uso delle quattro operazioni e l'estrazione di radici quadrate se e solo se , sia in modo continuo sia in modo discontinuo 1. Tale rappresentazione induce un'applicazione lineare di Vn in sé, che manda ... Leggi Tutto
CATEGORIA: ALGEBRA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali

Storia della Scienza (2003)

L'Ottocento: matematica. Equazioni differenziali alle derivate parziali Thomas Archibald Equazioni differenziali alle derivate parziali Nel corso del XIX sec. la teoria delle funzioni di più variabili [...] lineare, sebbene sia stata indiscutibilmente presente l'idea della derivazione parziale (di qualsiasi ordine) come operatore ossia du=0 (supponendo, come egli afferma, che u sia continua). Ciò, a sua volta, implica che tutte le derivate parziali ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Età dei Lumi: matematica. La matematica della teoria delle perturbazioni da Euler a Laplace

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. La matematica della teoria delle perturbazioni da Euler a Laplace Curtis Wilson La matematica della teoria delle perturbazioni da Euler a Laplace Accanto allo sviluppo dei [...] 'ipotesi che r e φ siano le uniche variabili e operando alcune sostituzioni a partire dalle [2], [3] e angolo π deve però essere una combinazione lineare degli angoli p, p1, p2, al 1785 erano due: un continuo incremento del moto medio lunare ... Leggi Tutto
CATEGORIA: STORIA DELL ASTRONOMIA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA

Dalla prospettiva dei pittori alla prospettiva dei matematici

Il Contributo italiano alla storia del Pensiero: Scienze (2013)

Dalla prospettiva dei pittori alla prospettiva dei matematici Pietro Roccasecca Il progressivo abbandono nei dipinti su tavola dei fondi oro in favore di paesaggi e vedute urbane, l’attenzione al naturale [...] una disposizione ordinata e continuata. Rendeva inoltre utilizzabili, dagli operatori in grado di ripeterle, indicava senza dubbio la filosofia della visione, non la prospettiva lineare, perché quest’ultimo significato era ancora di là da venire. ... Leggi Tutto
CATEGORIA: PITTURA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA
TAGS: BIBLIOTECA APOSTOLICA VATICANA – BATTISTERO DI SAN GIOVANNI – JACOPO BAROZZI DA VIGNOLA – ANTONIO DI TUCCIO MANETTI – PIERO DELLA FRANCESCA
Mostra altri risultati Nascondi altri risultati su Dalla prospettiva dei pittori alla prospettiva dei matematici (5)
Mostra Tutti

L'Ottocento: matematica. Metodi del calcolo numerico

Storia della Scienza (2003)

L'Ottocento: matematica. Metodi del calcolo numerico Dominique Tournès Metodi del calcolo numerico Prima del 1870 l'analisi numerica non si era ancora sviluppata come disciplina autonoma; esisteva [...] nelle quali si addizionano continuamente lunghe colonne di cifre. 'metodo delle tangenti', e l'interpolazione lineare. Per un'equazione f(x)=0 per n=6, caso frequente in astronomia, occorrono 144 operazioni nel primo caso e circa 26.000 nel secondo). ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Calcolo delle variazioni

Storia della Scienza (2003)

L'Ottocento: matematica. Calcolo delle variazioni Craig Fraser Calcolo delle variazioni Il problema di Euler Nel 1744 Leonhard Euler formulò il problema principale del calcolo delle variazioni nei [...] Berlino, ove tenne seminari e continuò le sue ricerche fino alla morte ma δV=0 è un'equazione differenziale lineare del secondo ordine nell'incognita δy, la differenziale di Euler per mezzo del suo operatore δ, aveva implicitamente assunto che i ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA
1 2
Vocabolario
spèttro
spettro spèttro s. m. [dal lat. spectrum «visione, fantasma» (der. di specĕre «guardare»); il sign. 2 risale al lat. scient. della fine del sec. 17°]. – 1. a. Immagine, visione soprannaturale di una persona morta che appare ai vivi per reclamare...
moménto
momento moménto s. m. [dal lat. momentum, der. della radice di movere «muovere»; propr. «movimento, impulso; piccolo peso che determina il movimento e l’inclinazione della bilancia», da cui i sign. estens. e traslati di «piccola divisione...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali