statistico, operatore In meccanica quantistica, operatore tramite il quale si attua (detto anche matrice s., o matrice, o densità) la descrizione di un sistema che si trovi in uno stato misto (➔ stato), [...] quale sono dati i pesi, ma non le fasi relative tra i diversi stati puri che la realizzano. Tale operatore s. è un operatorehermitiano, ρ, i cui autovalori, ρi, soddisfano le relazioni: ρi≥0, √‾‾‾‾‾‾εiρi=‾‾Trρ‾‾=1‾‾‾‾, tale che il valor medio di ...
Leggi Tutto
Nodi e fisica
Louis H. Kauffman
Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] l'equazione di Schrödinger e per cui Eψk = Ekψk. Un ‛osservabile' E è un operatorehermitiano in uno spazio di Hilbert di funzioni d'onda. Che gli operatori hermitiani abbiano autovalori reali è in accordo con il fatto che tali autovalori possono ...
Leggi Tutto
spettro
spèttro [Der. del lat. spectrum "visione, fantasma"] [LSF] (a) Nel suo signif. originario, derivante dagli esperimenti di I. Newton sulla dispersione prismatica della luce solare, la figura luminosa [...] volte (s. del secondo, terzo, ecc. ordine). ◆ [MCQ] S. di una grandezza: insieme degli autovalori del-l'operatorehermitiano associato alla detta grandezza, che si postulano essere i valori numerici possibili per essa: v. meccanica quantistica: III ...
Leggi Tutto
generatore 2
generatóre2 [Der. dell'agg. generatore] [LSF] (a) Generic., chi dà origine a qualcosa, in partic. a un ente fisico o matematico: g. di gas, g. di gruppi, ecc. (b) Specific., dispositivo [...] onda regolabili. ◆ [MCQ] G. di una simmetria: data una simmetria cui corrisponde un operatore unitario U=exp(iαT), con i unità immaginaria, è l'operatorehermitiano T, in quanto per trasformazioni infinitesime, cioè per piccoli valori del parametro α ...
Leggi Tutto
Fisica
BBruno Ferretti
di Bruno Ferretti
Fisica
sommario: 1. Introduzione. a) Obiettività secondo Poincaré. b) Storia naturale e fisica. c) Il metodo sperimentale e il metodo teorico. d) Storicità [...] lineare, la cosiddetta equazione di Schrödinger:
In questa equazione ψ rappresenta la funzione d'onda, H è un operatore lineare hermitiano che, nella nuova meccanica quantica, rappresenta l'hamiltoniana del sistema e t è il tempo. Nella nuova ...
Leggi Tutto
In fisica, nella formulazione di P.A.M. Dirac della meccanica quantistica, relativa agli spazi di Hilbert, un b. è l’elemento duale dello spazio dei vettori ket (➔), che rappresentano gli stati di un sistema. [...] di dualità è definita in modo da associare a ogni ket il b. corrispondente, a ogni numero complesso il coniugato e a ogni operatore l’hermitiano coniugato. Il prodotto scalare di un b. per un ket dà un numero.
I due termini bra e ket derivano dalle ...
Leggi Tutto
bra
bra [Abbrev. dell'ingl. bra(cket) "parentesi", usato in it. come s.m.] [MCQ] Nelle notazioni di Dirac relative agli spazi di Hilbert, è un elemento dello spazio "duale" allo spazio dei vettori (ket); [...] in modo da associare a ogni ket il b. corrispondente, a ogni numero complesso il coniugato e a ogni operatore l'hermitiano coniugato; s'indica con il simb. 〈|, all'interno del quale si scrivono (unicamente con signif. simbolico) i numeri quantici ...
Leggi Tutto
Biologia
In genetica, tratto di DNA che fa parte di un operone e condiziona la trascrizione dei geni strutturali immediatamente adiacenti (➔ operone).
Filosofia
In filosofia analitica, un’espressione [...] ; se risulta A+=A, l’o. si dice hermitiano o, più propriamente, autoaggiunto. Con gli o. hermitiani struttura di semigruppo con unità; l’o. ω1 ω2 si dice prodotto degli operatori ω1 e ω2 nell’ordine; questi si dicono permutabili qualora ω1 ω2=ω2 ω1 ...
Leggi Tutto