In matematica, corrispondenza biunivoca e bicontinua tra due spazi topologici S e S′, tale cioè che: a) a ogni punto P di S associ uno e un sol punto P′ di S′ e viceversa (corrispondenza biunivoca); b) fissato a piacere un intorno I′ di un qualunque punto P′ di S′, esista un intorno I del punto P corrispondente a P′ tale che i corrispondenti dei punti di S che fanno parte di I appartengano tutti a ...
Leggi Tutto
omeomorfoomeomòrfo [agg. Comp. di omeo- e del gr. morphé "forma" e quindi "che ha forma simile"] [FSD] Sostanze o.: sostanze che hanno costanti cristallografiche non molto diverse tra loro, per cui [...] le loro forme semplici sono simili. ◆ [ALG] Spazi o.: quelli tra i quali corre una relazione di omeomorfismo (←). ...
Leggi Tutto
tricella
tricèlla [Comp. di tri- e cella] [ALG] Nella topologia, insieme di punti omeomorfo all'interno di una sfera o a uno spazio euclideo a tre dimensioni, detto più spesso cella a tre dimensioni. ...
Leggi Tutto
Jordan Camille
Jordan 〈ghordàn〉 Camille [STF] (Lione 1838 - Parigi 1922) Prof. di matematica nell'École Polytechnique di Parigi (1876); socio straniero dei Lincei (1895). ◆ [ALG] Curva, o linea, di J.: [...] , ossia ottenuto deformando con continuità il segmento, mentre la curva chiusa (o arco chiuso) di J. è un insieme di punti omeomorfo a una circonferenza, per es. un'ellisse o il perimetro di un poligono (v. fig.). ◆ [ALG] Decomposizione di J.: è la ...
Leggi Tutto
Uryson Pavel Samuilovic
Uryson (o Urysohn) 〈urïsòn〉 Pavel Samuilovič [STF] (Odessa 1898 - Batz, Loira, 1924) Libero docente di matematica nell'univ. di Mosca (1921). ◆ [ALG] Lemma di U.: afferma che [...] che f(x)=0 se x∈A, f(x)=1 se x∈B, 0≤f(x)≤1 se x∉A⋃B. ◆ [ANM] Teorema di U.: ogni spazio topologico normale, provvisto di una base numerabile di aperti, è omeomorfo a un sottospazio di uno spazio di Hilbert (e pertanto, in partic., è metrizzabile). ...
Leggi Tutto
In matematica, concetto introdotto nel 1935 da H. Whitney in relazione a problemi di topologia e geometria delle varietà. Ha dato luogo a una teoria che ha avuto un enorme sviluppo, specialmente in connessione [...] . Una funzione continua p: E→B è un f. con spazio totale E, spazio di base B e spazio fibra F se esiste un ricoprimento aperto {U} di B, e per ogni U∈{U} un omeomorfismo ϕU:U×F→p−1(U) con poϕU(x,y)=x per x∈U e y∈F; per ogni b∈B, p−1(b), che è ...
Leggi Tutto
simplesso In matematica, s. astratto, un insieme di k+1 elementi astratti (detti vertici) presi da un certo insieme e considerati a prescindere dal loro ordine, se si considera il s. non orientato, oppure [...] di un s. euclideo. S. topologico (o cella) Insieme ottenuto trasformando mediante un omeomorfismo un s. euclideo: per es., un arco aperto di Jordan, in quanto omeomorfo a un segmento, è un s. topologico di dimensione 1. Metodo del s. (simplex ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo
John McCleary
La topologia algebrica all'inizio del XX secolo
Le radici della topologia algebrica [...] e il problema della descrizione dello spazio fisico erano le motivazioni alla base del problema di sapere se ℝn e ℝm sono omeomorfi per n≠m. Georg Cantor (1845-1918) aveva dimostrato che esistono corrispondenze biunivoche tra ℝn e ℝm per ogni m e n ...
Leggi Tutto
VARIETÀ (App. II, 11, p. 1089)
Edoardo Vesentini
In geometria il termine v. è comunemente inteso in due differenti accezioni: v. algebrica (per la quale rinviamo alla voce geometria: Geometria algebrica, [...] Per ogni punto x di X esistono n funzioni f1, ..., fn di &scr;F; tali che la rappresentazione y →(f1(y), ..., fn(y)) sia un omeomorfismo di un intorno Ux di x su un insieme aperto di Rn, e che ogni funzione f di &scr;F coincida in Ux con una ...
Leggi Tutto
Matematica
Lo studio delle proprietà geometriche delle figure che non dipendono dalla nozione di misura, ma sono legate a problemi di deformazione delle figure stesse.
Proprietà topologiche
La t., che [...] g)=Im(f); cioè, se g(b)=0 se e solo se esiste a∈A tale che f(a)=b. Chiaramente due spazi topologici omeomorfi hanno gli stessi gruppi di omologia; questo fatto fornisce un importante strumento d’indagine, anche se non vale sempre l’inverso (due spazi ...
Leggi Tutto
omeomorfo
omeomòrfo agg. [dal gr. ὁμοιόμορϕος, comp. di ὁμοιο- «omeo-» e μορϕή «forma» (v. -morfo)]. – Propr., che ha forma o struttura simile. In partic.: 1. In cristallografia, di sostanza che presenta omeomorfismo. 2. In matematica, di...