• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
atlante
il chiasmo
lingua italiana
313 risultati
Tutti i risultati [6943]
Biografie [962]
Storia [675]
Arti visive [592]
Geografia [329]
Temi generali [497]
Diritto [486]
Medicina [423]
Biologia [382]
Fisica [366]
Archeologia [413]

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica Umberto Bottazzini Filosofia e pratica matematica Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] due ideali, è chiaro cosa significa A divide B: esiste un ideale C tale che B=AC. Come avviene per i numeri naturali, si possono definire gli ideali primi e dimostrare il teorema che ogni ideale può essere scomposto in maniera (essenzialmente) unica ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

Intuizionismo

Enciclopedia del Novecento (1978)

Intuizionismo AArend Heyting di Arend Heyting Intuizionismo sommario: 1. Concetti fondamentali.  2. Aritmetica elementare.  3. Il principio del terzo escluso. 4. I numeri reali. 5. Ineguaglianza e separazione [...] della quale appartenga a D, ha esattamente un segmento iniziale in B. Uno sbarramento B in D e una funzione f da B ai numeri naturali definiscono una funzione ϕ su H nella maniera seguente: sia α ∈H e sia n il segmento iniziale di α in B, allora ϕ ... Leggi Tutto
TAGS: TEOREMA DI BOLZANO-WEIERSTRASS – PRINCIPIO DEL TERZO ESCLUSO – QUANTIFICATORE UNIVERSALE – LIMITE DI UNA SUCCESSIONE – CORRISPONDENZA BIUNIVOCA
Mostra altri risultati Nascondi altri risultati su Intuizionismo (3)
Mostra Tutti

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] di Zorn) la cui cardinalità è univocamente determinata e si dice ‛dimensione' dello spazio vettoriale. Se questa è un numero naturale n ∈ N, lo spazio vettoriale si dice ‛di dimensione finita'. Un'applicazione A : E → F si dice ‛lineare', ovvero ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

La grande scienza. Teoria dei numeri

Storia della Scienza (2003)

La grande scienza. Teoria dei numeri Anatolij A. Karatsuba Teoria dei numeri La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] n⟨G(n)≤g(n), e il risultato di Hardy e Littlewood può essere anche formulato come segue: n⟨G(n)≤n2n. Ora, visto che il numero naturale N della forma N=2n([(3/2)n]−1)+2n−1 è più piccolo di 3n, per le sue rappresentazioni come somma di potenze n-esime ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica Solomon Feferman Le scuole di filosofia della matematica I più importanti programmi di fondazione della [...] '+' e di '1', e non sia scritta in questa forma). Gli assiomi inoltre stabiliscono che (III) 0 non è successore di alcun numero naturale, (IV) sc è un'operazione iniettiva da ℕ a ℕ, e (V) ℕ è il più piccolo insieme che contiene 0 ed è chiuso rispetto ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

NUMERI

XXI Secolo (2010)

Numeri Umberto Zannier Quanti? Quanto? Quando? A che distanza? Domande a cui rispondiamo, di solito, con numeri. Di essi facciamo continuo uso, e l’importanza concettuale, oltre che pratica, della nozione [...] così come raia / da l’un, se si conosce, il cinque e ’l sei» (Paradiso XV, 56-57). La teoria dei numeri I numeri naturali sono il materiale matematico di base, ma non per questo si lasciano studiare facilmente; anzi, pare che in un certo senso questa ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – ARITMETICA

L'Età dei Lumi: matematica. La teoria dei numeri

Storia della Scienza (2002)

L'Eta dei Lumi: matematica. La teoria dei numeri Günther Frei La teoria dei numeri La teoria dei numeri (o aritmetica) tratta delle proprietà dei numeri. Lungo tutta la sua storia, un tema dominante [...] da Lagrange nel 1775. Nel 1752 Euler scoprì e dimostrò anche l'inverso del teorema 4.2, e cioè (teorema 4.4): se un numero naturale dispari m>1 è rappresentabile in modo unico come somma di due interi non negativi x e y, m=x2+y2, e se inoltre ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – ARITMETICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Teoria analitica dei numeri Günther Frei Teoria analitica dei numeri La teoria analitica dei numeri non è una teoria matematica ben definita, [...] n è somma di al più 19 quarte potenze; (3) per ogni esponente e.1 esiste un (minimo) numero naturale s5s(e) tale che ogni numero naturale n è somma di al più s potenze e-esime (non negative). Per i teoremi di Lagrange dei quattro quadrati e di ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

Complessità algoritmica

Enciclopedia della Scienza e della Tecnica (2007)

Complessità algoritmica Fabrizio Luccio Gli studi di complessità di calcolo si sono sviluppati essenzialmente nella seconda metà del ventesimo secolo. Basati sulla formalizzazione del concetto di algoritmo, [...] di celle diverse (oltre quelle contenenti α) visitate sul nastro dalla testa di M e sia t(α) il numero di mosse compiute da M. Considerato, per ogni numero naturale n∈ℕ, l'insieme A(n)={α tali che ∣α∣=n}, si dice che M ha complessità in spazio S ... Leggi Tutto
CATEGORIA: TEMI GENERALI
TAGS: LINGUAGGIO DI PROGRAMMAZIONE – INSIEME DEI NUMERI NATURALI – TEORIA DELLA COMPUTABILITÀ – TEORIA DELLA COMPLESSITÀ – TEORIA DEGLI INSIEMI

La seconda rivoluzione scientifica: matematica e logica. I teoremi di incompletezza di Gödel

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. I teoremi di incompletezza di Godel Carlo Cellucci I teoremi di incompletezza di Gödel Nei giorni 5-7 settembre 1930 ebbe luogo a Königsberg [...] di incompletezza Diciamo che T è ω-coerente se, per ogni enunciato della forma ∃xφ(x), se T⊦∃xφ(x) allora per qualche numero naturale n si ha che T⊬¬φ(n); diciamo che T è ω-incoerente se non è ω-coerente. La principale applicazione del teorema del ... Leggi Tutto
CATEGORIA: ARITMETICA – STORIA DELLA MATEMATICA
1 2 3 4 5 6 7 8 ... 32
Vocabolario
nùmero
numero nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
naturale
naturale agg. [dal lat. naturalis]. – 1. Della natura, che riguarda la natura o si riferisce alla natura, nel suo sign. più ampio e comprensivo: filosofia n., locuz. con la quale si indicò in passato e si indica tuttora in alcuni paesi l’indagine...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali