Algebra
Irving Kaplansky
sommario: 1. Introduzione. 2. Gruppi in generale. 3. Gruppi semplici finiti. 4. Gruppi infiniti. 5. Gruppi liberi. 6. Gruppi abeliani infiniti. 7. Anelli in generale. 8. Corpi. [...] su un corpo. La struttura di uno spazio vettoriale a dimensione finita è completamente determinata da un numerocardinale, la sua dimensione, cioè il numero degli elementi di una sua base. Pertanto, l'algebra lineare non si sofferma a studiare gli ...
Leggi Tutto
Logica matematica
Abraham Robinson
*La voce enciclopedica Logica matematica è stata ripubblicata da Treccani Libri, arricchita e aggiornata da un’introduzione di Gabriele Lolli e un saggio di Beppo [...] assiomatico ‛ragionevole' per la teoria degli insiemi) che per ogni insieme S esiste un insieme S′ il cui numerocardinale è maggiore del numerocardinale di S. In particolare si può dimostrare che S′ è l'insieme dei sottoinsiemi di S. Tuttavia gli ...
Leggi Tutto
Scienza indiana: periodo classico. Matematica
Takao Hayashi
Matematica
'Gaṇita' ('matematica')
Prima dell'introduzione e diffusione dell'astrologia oroscopica e dell'astronomia matematica nella società [...] a si può considerare un analogo dell''aleph zero', il più piccolo numerocardinale transfinito della matematica moderna. Il più piccolo numero di ciascuno degli altri sottoinsiemi è dato, rispettivamente, da aa, bb con b=(aa)2, cc con c=bb, dd con ...
Leggi Tutto
La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica
Umberto Bottazzini
Filosofia e pratica matematica
Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] in un tutto M di oggetti distinti e ben definiti della nostra intuizione e del nostro pensiero" e la sua potenza (o numerocardinale) è "quel concetto generale che, per mezzo della nostra attiva facoltà di pensare, si deduce dall'insieme M, facendo ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica
Solomon Feferman
Le scuole di filosofia della matematica
I più importanti programmi di fondazione della [...] card(X) potesse essere rappresentato in termini di oggetti o nozioni più basilari.
Se si accetta l'associazione di un numerocardinale card(X) a ciascun insieme X in una qualche maniera che soddisfi la condizione sopra esposta per l'uguaglianza di ...
Leggi Tutto
Numeri
Umberto Zannier
Quanti? Quanto? Quando? A che distanza? Domande a cui rispondiamo, di solito, con numeri. Di essi facciamo continuo uso, e l’importanza concettuale, oltre che pratica, della nozione [...] che siano in corrispondenza biunivoca, definisce la nozione di cardinalità di un insieme; si può concepire, quindi, un numero naturale come una cardinalità, e si parla allora di numerocardinale.
Da tutto ciò vediamo che questo concetto basilare di ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Rafael Bombelli
Veronica Gavagna
Ultimo esponente della scuola algebrica italiana cinquecentesca, Rafael Bombelli è autore del trattato L’algebra (1572) che, da un lato, presenta un quadro organico [...] un’incognita, nei manoscritti figura una semicirconferenza al di sopra del coefficiente entro la quale viene indicato il numerocardinale della potenza; nella versione a stampa, la semicirconferenza viene spostata a destra del coefficiente in modo da ...
Leggi Tutto
insieme
insième [Der. del lat. insemel, forma corrotta di insimul, comp. di in- e simul "insieme"] [ALG] Secondo la definizione di G. Cantor, ogni raccolta (aggregato, famiglia) di enti distinti, detti [...] ) se A e B sono due i. qualsiasi, si dirà che A e B hanno la stessa potenza (o cardinalità, o anche lo stesso numerocardinale) se è possibile stabilire una corrispondenza biunivoca fra gli elementi dei due i., cioè se è possibile formulare una legge ...
Leggi Tutto
transfinito In matematica, che va al di là del finito. Numeri t. (o infiniti), numeri che estendono al caso di insiemi con infiniti elementi i concetti di numerocardinale e ordinale dell’aritmetica ordinaria [...] . più grande; questo è indicato con il simbolo ℵ2; e così di seguito.
Cantor si pose il problema di sapere se esistono numericardinali intermedi tra ℵ0 e ℵ1, e più in generale tra ℵn e ℵn+1. Non riuscendo a risolverlo formulò una congettura (ipotesi ...
Leggi Tutto
In matematica, insieme che può essere posto in corrispondenza biunivoca con l’insieme dei numeri interi naturali. Un insieme n. è dunque necessariamente un insieme infinito; ogni suo sottoinsieme è finito [...] oppure è esso stesso n.; da ciò segue che agli insiemi n. corrisponde il minimo n. cardinale transfinito (➔ transfinito). Tale numerocardinale si chiama potenza del n. e si usa denotare con la prima lettera dell’alfabeto ebraico, accompagnata dall’ ...
Leggi Tutto
numero
nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
numerabile
numeràbile agg. e s. m. [dal lat. numerabĭlis]. – Che può essere numerato, cioè distinto con numeri, oppure calcolato esattamente: ci darà la quantità esatta delle ore e minuti ..., se la frequenza fusse da noi n. (Galilei). In...