Equazioni differenziali: problemi non lineari
Jean Mawhin
La modellizzazione di molti problemi fisici porta alla ricerca di soluzioni di equazioni differenziali di secondo ordine, ordinarie o alle derivate [...] finito di punti e il grado di g stessa su D è definito da
[13] formula
ovvero dalla somma algebrica del numero dei suoi zeri: a questi è assegnato il valore +1 se il corrispondente determinante dello Jacobiano g′(c) è positivo e −1 se è negativo ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo
John McCleary
La topologia algebrica all'inizio del XX secolo
Le radici della topologia algebrica [...] L(F)≠0, F ha un punto fisso.
Nel 1925 Emmy Noether (1882-1935), l'eminente algebrista di Gottinga, spiegò come gli invarianti numerici della topologia combinatoria si potessero organizzare meglio come invarianti di certi gruppi, i gruppi di Betti. I ...
Leggi Tutto
L'Ottocento: matematica. Metodi del calcolo numerico
Dominique Tournès
Metodi del calcolo numerico
Prima del 1870 l'analisi numerica non si era ancora sviluppata come disciplina autonoma; esisteva [...] rappresentati, su un foglio da disegno, da segmenti di diversa lunghezza e le operazioni algebriche sui numeri sono sostituite da costruzioni geometriche su questi segmenti. Le costruzioni si possono fare con la riga, il compasso e altri strumenti ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. Algebra
Claudio Procesi
Algebra
Per comprendere la storia dell'algebra del XX sec. è necessario fare un breve quadro dello sviluppo della disciplina [...] corpi di dimensione finita sul proprio centro. Questo studio ha portato a un'analisi profonda dei corpi sui campi di numerialgebrici e al teorema di Albert, Brauer, Hasse e Noether secondo il quale ogni tale corpo ha un sottocampo massimale ciclico ...
Leggi Tutto
Invarianti, Teoria degli
Claudio Procesi
La geometria proiettiva, e le geometrie non euclidee, ebbero un grande impatto sul pensiero algebrico e geometrico del secolo scorso. Le idee scaturite da questa [...] interesse va ben oltre quello del problema di Hilbert e si innesta nella teoria dei gruppi di Lie e dei gruppi algebrici.
Numerosi autori ‒ tra cui Ernst Fischer (1911) e Adolf Hurwitz (1933) ‒ hanno compreso come la prova di Hilbert sia connessa a ...
Leggi Tutto
Scienza greco-romana. Diofanto di Alessandria
Roshdi Rashed
Diofanto di Alessandria
Nel corso degli ultimi decenni la nostra conoscenza dell’opera di Diofanto di Alessandria è cambiata in maniera considerevole, [...] , sebbene non sia espressa alcuna esigenza su questo punto. L’Aritmetica, infatti, tratta soltanto numeri razionali positivi, non considera mai i numeri razionali algebrici per se stessi, non più, del resto, di quanto faccia con il criterio di ...
Leggi Tutto
L'Ottocento: matematica. Calcolo geometrico
Paolo Freguglia
Gert Schubring
Calcolo geometrico
Uno degli aspetti che hanno caratterizzato lo sviluppo della matematica nell'Ottocento è rappresentato [...] da Bellavitis in una serie di lavori a partire dal 1832, costituisce uno strumento per ottenere geometricamente l'algebra dei numeri complessi e contemporaneamente un completo calcolo geometrico piano. Come scriveva Bellavitis nel Saggio sull ...
Leggi Tutto
CREMONA, Luigi
U. Bottazzini
Lauro Rossi
Nacque a Pavia il 7 dic. 1830 da Gaudenzio, un novarese di famiglia assai agiata poi caduta in rovina, e da Teresa Andreoli. Ebbe tre fratelli tra i quali Tranquillo, [...] 5 o 6 la celebre formula di Riemann 3 p - 3 che dà il numero dei moduli di una curva di genere p (Intorno al numero dei moduli delle equazioni e delle curve algebriche di dato genere. Osservazioni, in Rend. d. Ist. lombardo di scienze lettere ed arti ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Enrico Betti
Iolanda Nagliati
Enrico Betti fu uno dei più importanti matematici italiani del 19° sec.; ottenne risultati rilevanti in vari campi di ricerca: l’algebra, con gli studi sulla risoluzione [...] il ministero della Pubblica istruzione.
Fu socio di numerose accademie e società scientifiche, come l’Accademia nazionale cui si svolse: la prima dedicata alle ricerche in campo algebrico, la seconda all’analisi e l’ultima alla fisica matematica. ...
Leggi Tutto
campo
campo [Der. del lat. campus "estensione di terreno"] [LSF] Termine per indicare, con aderenza al signif. letterale, un'estensione di spazio caratterizzata da ben definite proprietà fisiche, sia [...] trascendenti). Con riguardo ai c. più elementarmente noti, se per es. C è il c. razionale, C- è il cosiddetto c. dei numerialgebrici (radici di equazioni a coefficienti razionali) e se C è invece il c. reale, C- è il c. complesso. Dire che il c ...
Leggi Tutto
algebrico
algèbrico agg. [der. di algebra] (pl. m. -ci). – Di algebra, che concerne l’algebra: calcoli a., somma a., analisi a., ecc.; in partic.: espressione a., ogni scrittura in cui compaiano numeri, lettere e indeterminate, queste ultime...
numero
nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...