La civilta islamica: antiche e nuove tradizioni in matematica. Trigonometria
Marie-Thérèse Debarnot
Trigonometria
Dalla geometria alla trigonometria
La trigonometria, scienza ausiliaria dello studio [...] dagli astronomi dei secc. IX e X, la precisione del calcolo numerico caratterizza quest'ultimo periodo rappresentato dalla Scuola di Samarcanda. Essa si avvale dei progressi dell'algebra, in particolare dei lavori di matematici come al-Samaw᾽al, al ...
Leggi Tutto
La scienza in Cina: l'epoca Song-Yuan. La matematica
Karine Chemla
Annick Horiuchi
Andrea Eberhard-Bréard
La matematica
La rinascita della matematica e la tarda tradizione settentrionale
di Karine [...] (v. par. 2), senza la virgola, ma in posizione orizzontale rispetto ai numeri interi.
Per quanto riguarda le equazioni algebriche (la cui risoluzione numerica non presentava difficoltà per i matematici della dinastia Yuan), Zhu Shijie, sempre nel ...
Leggi Tutto
Il Contributo italiano alla storia del Pensiero - Tecnica (2013)
La sfida della cupola
Roberto Masiero
David Zannoner
Le cupole e la scienza
L’ideazione e la costruzione delle cupole, dal Quattrocento al Settecento, ha alimentato la sperimentazione e la formalizzazione [...] 16° secolo. Attraverso la successione di alcuni papi, numerosi architetti furono coinvolti nell’impresa, che culminò nel 1588 vero che il Barocco è l’età del grande sviluppo dell’algebra e del calcolo infinitesimale, e se «le curve dei grandi ...
Leggi Tutto
La Rivoluzione scientifica: i domini della conoscenza. Le innovazioni di Luca Valerio e di Bonaventura Cavalieri
Pier Daniele Napolitani
Le innovazioni di Luca Valerio e di Bonaventura Cavalieri
L'eredità [...] CD2:BD×DE=costante
Spiegheremo la dimostrazione di Valerio in termini algebrici. È una scelta che porta a non essere del tutto teorema (ibidem, II, corollario alla prop. II.4) a un numero indefinito di grandezze; e dato che per ogni piano le sezioni ...
Leggi Tutto
La civilta islamica: antiche e nuove tradizioni in matematica. L'algebra e il suo ruolo unificante
Roshdi Rashed
L'algebra e il suo ruolo unificante
La seconda metà del VII sec. vede il costituirsi [...] e un nuovo linguaggio; anzi, definisce un nuovo oggetto. Comincia così con il formulare la nozione di massimo di un'espressione algebrica, che egli chiama "il numero più grande (al-῾adad al-a῾ẓam)". Sia f(x0)=c0 il massimo di f(x) nel punto (x0,c0 ...
Leggi Tutto
Apprendimento dinamico della memoria di lavoro: una realizzazione elettronica
Daniel J. Amit
(Racah Institute of Physics, Hebrew University Gerusalemme, Israele - Istituto Nazionale di Fisica Nucleare [...] i valori di ogni sinapsi (si mantiene solo il segno algebrico della sommatoria nell'equazione [l]). Se però, da un piccola. Invece, se q rimane fissa con l'aumentare di N, il numero di stimoli che la matrice sinaptica è in grado di tenere in memoria ...
Leggi Tutto
La scienza presso le civilta precolombiane. Pratiche di calcolo nell'antica Mesoamerica
John S. Justeson
Pratiche di calcolo nell'antica Mesoamerica
La matematica mesoamericana si è sviluppata al di [...] sostanzialmente più grandi e la loro struttura essenziale è simile a quella di un'espressione algebrica polinomiale. Ricordiamo che ogni numero positivo intero n può essere rappresentato in maniera univoca da un insieme di 'coefficienti' ci (0≤ci ...
Leggi Tutto
L'Ottocento: matematica. Il rigore in analisi
Umberto Botta
Il rigore in analisi
L'eredità di Lagrange
All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] , con il quale era entrato in corrispondenza, a classificare gli insiemi infiniti secondo la loro 'potenza' ‒ insiemi numerabili come i numeri razionali e i numerialgebrici, che si potevano mettere in corrispondenza biunivoca con l'insieme dei ...
Leggi Tutto
La grande scienza. Geometria non commutativa
Alain Connes
Geometria non commutativa
Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] chiusi. Ma non vi è nulla di simile quando si considera la teoria del campo di classe sui numeri complessi, perché il campo complesso è algebricamente chiuso. Ora accade che la teoria dei fattori sia un sostituto non banale della teoria di Brauer in ...
Leggi Tutto
La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica
Umberto Bottazzini
Filosofia e pratica matematica
Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] alle concezioni di Dedekind nel proseguire lo studio dei campi astratti, che non sono però intesi come domini di numeri (algebrici, reali o complessi), come pensava Dedekind, bensì "come strutture formali del tutto prive di ogni riferimento a una ...
Leggi Tutto
algebrico
algèbrico agg. [der. di algebra] (pl. m. -ci). – Di algebra, che concerne l’algebra: calcoli a., somma a., analisi a., ecc.; in partic.: espressione a., ogni scrittura in cui compaiano numeri, lettere e indeterminate, queste ultime...
numero
nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...