• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
il chiasmo
175 risultati
Tutti i risultati [524]
Matematica [175]
Algebra [67]
Storia della matematica [56]
Fisica [53]
Filosofia [47]
Temi generali [39]
Fisica matematica [35]
Analisi matematica [34]
Biologia [28]
Biografie [26]

continuo e discreto

Enciclopedia dei ragazzi (2005)

continuo e discreto Paolo Zellini Un enigma che la matematica ha sempre cercato di risolvere Sono molte le domande che ci spingono a cercare una definizione del continuo. Lo spazio è composto di punti? [...] retta ci sono perciò dei punti ‒ infiniti punti! ‒ cui non corrisponde alcun numero razionale. Per ottenere il continuo occorre aggiungere ai numeri razionali i numeri come √2, che si chiamano irrazionali, stabilendo in questo modo una corrispondenza ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: CORRISPONDENZA BIUNIVOCA – NUMERI INTERI NATURALI – TEOREMA DI PITAGORA – PARADOSSI DI ZENONE – DISCRETO E CONTINUO

CATALDI, Pietro Antonio

Dizionario Biografico degli Italiani (1979)

CATALDI, Pietro Antonio Augusto De Ferrari Nacque a Bologna il 15 apr. 1552 da Paolo, emerito cittadino bolognese. Compiuti gli studi di matematica nella città natale, ottenne giovanissimo l'incarico [...] reca in appendice uno scritto sull'uso delle linee invece dei numeri per eseguire le operazioni algebriche; Aritmetica universale, ibid. 1617, sui numeri razionali; Nuova algebra proportionale, ibid. 1619; Elementi dellequantità algebratiche..., ibid ... Leggi Tutto
CATEGORIA: BIOGRAFIE
TAGS: TEORIA DEI NUMERI – IGNAZIO DANTI – ARITMETICA – MATEMATICA – ASTRONOMIA
Mostra altri risultati Nascondi altri risultati su CATALDI, Pietro Antonio (3)
Mostra Tutti

campi di numeri

Enciclopedia della Scienza e della Tecnica (2008)

Campi di numeri Massimo Bertolini Sia α un numero algebrico, cioè un numero complesso che soddisfa un’equazione algebrica p(x)=0, dove p(x) è un polinomio di grado n≥1 avente coefficienti nel campo [...] ℚ dei numeri razionali. L’insieme K = ℚ[α] di tutte le espressioni polinomiali in α a coefficienti in ℚ è un sottocampo del campo complesso ℂ, detto campo di numeri. Ciò significa che la somma e il prodotto di elementi di K appartengono a K; inoltre, ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEOREMA FONDAMENTALE DELL’ARITMETICA – TEOREMA DI KRONECKER-WEBER – FUNZIONE ESPONENZIALE – EQUAZIONE ALGEBRICA – ERNST EDUARD KUMMER

algebra non commutativa

Enciclopedia della Scienza e della Tecnica (2008)

algebra non commutativa Luca Tomassini Sia F un campo, ovvero un corpo commutativo. Un insieme A è detto F-algebra (o algebra su F) se è uno spazio vettoriale sul campo F (per es., i campi ℚ, ℝ, ℂ dei [...] numeri razionali, reali e complessi) munito in aggiunta di un’applicazione (moltiplicazione) F×F→F che sia bilineare, cioè lineare in ognuno dei fattori considerati separatamente: (λx+μy)z = λ(xz) + μ(yz) x(λy+μz) = λ(xy) + μ(xz) per ogni x,y,z di A ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: TEORIA DELLE RAPPRESENTAZIONI – APPLICAZIONI LINEARI – SPAZIO VETTORIALE – ALGEBRA LINEARE – ALGEBRE DI LIE
Mostra altri risultati Nascondi altri risultati su algebra non commutativa (4)
Mostra Tutti

campo delle frazioni

Enciclopedia della Scienza e della Tecnica (2008)

campo delle frazioni Luca Tomassini Sia D un dominio di integrità (cioè un anello abeliano nel quale a≠0 e b≠0 implica ab≠0, per ogni a,b∈D). Sussiste allora il seguente teorema: ogni dominio di integrità [...] Φ:D→F con la formula Φ(a)=[a,1]. Il più importante esempio di campo delle frazioni è senza dubbio quello dei numeri razionali ℚ. Il dominio di integrità di partenza è l’insieme ℤ degli interi relativi, il simbolo (a,b) è sostituito da a/b e non ... Leggi Tutto
CATEGORIA: ALGEBRA
TAGS: RELAZIONE DI EQUIVALENZA – ANELLO DEI POLINOMI – ELEMENTO NEUTRO – ABELIANO
Mostra altri risultati Nascondi altri risultati su campo delle frazioni (1)
Mostra Tutti

divisione

Dizionario delle Scienze Fisiche (1996)

divisione divisióne [Der. del lat. divisio -onis, da dividere] [BFS] D. cellulare: il processo attraverso cui il materiale cellulare, raddoppiatosi durante l'interfase, viene diviso tra le due cellule [...] a (dividendo), cioè, in simboli: x=a:b, oppure x=a/b, con b≠0. Se l'insieme dei numeri che si considerano è quello dei numeri razionali, o dei numeri reali, o, più in generale, un campo, l'operazione di d. (escluso il caso del divisore nullo) ammette ... Leggi Tutto
CATEGORIA: BIOFISICA – FISICA MATEMATICA – TEMI GENERALI – ALGEBRA – ANALISI MATEMATICA – ELETTRONICA
Mostra altri risultati Nascondi altri risultati su divisione (2)
Mostra Tutti

Dedekind Julius Wilhelm Richard

Dizionario delle Scienze Fisiche (1996)

Dedekind Julius Wilhelm Richard Dedekind 〈déedëkint〉 Julius Wilhelm Richard [STF] (Brunswick 1831- ivi 1916) Matematico, insegnò nel politecnico di Zurigo (1862), poi in quello di Brunswick (dal 1862); [...] su cui può fondarsi l'aritmetica: v. Gödel, teorema di: III 54 a. ◆ [ALG] Sezione di D.: qualunque suddivisione dell'insieme Q dei numeri razionali in due sottoinsiemi A e B tali che ogni elemento di A sia minore di ogni elemento di B; se né il ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – STORIA DELLA FISICA – ALGEBRA
TAGS: ARITMETICA – ZURIGO
Mostra altri risultati Nascondi altri risultati su Dedekind Julius Wilhelm Richard (3)
Mostra Tutti

TOPOLOGIA ASTRATTA

Enciclopedia Italiana - II Appendice (1949)

TOPOLOGIA ASTRATTA S. Fac. . La topologia (meno modernamente chiamata analysis situs; v. III, p. 87) si occupa delle proprietà invarianti degli insiemi di punti nelle trasformazioni bicontinue (omeomorfismi), [...] tali cioè che ogni intorno di ogni loro elemento contiene intorni aperti senza frontiera (es. lo spazio dei numeri razionali, quello dei numeri irrazionali). Come modello degli spazî 0-dimensionali si può assumere un noto insieme perfetto e di misura ... Leggi Tutto

La civiltà islamica: antiche e nuove tradizioni in matematica. Filosofia della matematica

Storia della Scienza (2002)

La civilta islamica: antiche e nuove tradizioni in matematica. Filosofia della matematica Roshdi Rashed Filosofia della matematica Gli storici della filosofia islamica dimostrano un interesse molto [...] infatti che con questo termine Avicenna voglia intendere una scienza che ingloba tutte quelle discipline che trattano dei numeri, razionali e irrazionali algebrici, e l'ultimo paragrafo del suo libro, dedicato ad al-ariṯmāṭīqī, non lascia spazio ad ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

La grande scienza. Cronologia scientifica: 1941-1950

Storia della Scienza (2003)

La grande scienza. Cronologia scientifica: 1941-1950 1941-1950 1941 Le successioni esatte. Introdotte in una nota sui gruppi di coomologia (priva di dimostrazioni) dal polacco Witold Hurewicz ed estensivamente [...] ) oppure λ=exp(2πiα) con α diofanteo (condizione di Siegel, che implica che α sia irrazionale e non ben approssimabile con numeri razionali), allora la mappa è coniugata alla mappa lineare g(z)=λz in un intorno di 0. Il lemma di Sard. Il matematico ... Leggi Tutto
CATEGORIA: ANTROPOLOGIA FISICA – BIOCHIMICA – STORIA DELLA BIOLOGIA – CHIMICA FISICA – STORIA DELLA CHIMICA – FISICA MATEMATICA – STORIA DELLA FISICA – STORIA DELLA MATEMATICA – STORIA DELLA MEDICINA
1 2 3 4 5 6 7 8 ... 18
Vocabolario
nùmero
numero nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
razionale¹
razionale1 razionale1 agg. [dal lat. rationalis, der. di ratio -onis «ragione»]. – 1. a. Che è fornito, che è dotato di ragione: anima, creatura r.; molti [animali], quasi come razionali ... la notte alle lor case senza alcuno correggimento...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali