• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
sinonimi
il chiasmo
175 risultati
Tutti i risultati [524]
Matematica [175]
Algebra [67]
Storia della matematica [56]
Fisica [53]
Filosofia [47]
Temi generali [39]
Fisica matematica [35]
Analisi matematica [34]
Biologia [28]
Biografie [26]

L'Ottocento: matematica. Il rigore in analisi

Storia della Scienza (2003)

L'Ottocento: matematica. Il rigore in analisi Umberto Botta Il rigore in analisi L'eredità di Lagrange All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] di misura. "La retta è infinitamente più ricca di punti che non il campo razionale di numeri", affermava Dedekind, e i numeri razionali non consentono di descrivere aritmeticamente le sue proprietà. Si rendeva indispensabile l'ampliamento del campo ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: introduzione. Filosofia e pratica matematica Umberto Bottazzini Filosofia e pratica matematica Quando si parla di 'seconda rivoluzione' scientifica si pensa di solito [...] quello che serve nel calcolo, dice Kronecker, è la possibilità di isolare tali intervalli, e per farlo bastano i numeri razionali. Anche se in linea di principio "ogni proposizione di algebra o di analisi superiore, per quanto lontana, si lascia ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

Intuizionismo

Enciclopedia del Novecento (1978)

Intuizionismo AArend Heyting di Arend Heyting Intuizionismo sommario: 1. Concetti fondamentali.  2. Aritmetica elementare.  3. Il principio del terzo escluso. 4. I numeri reali. 5. Ineguaglianza e separazione [...] segue: la successione {a1, ..., am} appartiene a D se ∣an+1 − 2an ∣ ≤ I ⟨ 1 per ogni n ⟨ m. S è la specie dei numeri razionali. F({a1, ..., am}) = am•2-m. Un elemento di C è una successione infinita {am•2-m}m, dove gli am, soddisfano la condizione ... Leggi Tutto
TAGS: TEOREMA DI BOLZANO-WEIERSTRASS – PRINCIPIO DEL TERZO ESCLUSO – QUANTIFICATORE UNIVERSALE – LIMITE DI UNA SUCCESSIONE – CORRISPONDENZA BIUNIVOCA
Mostra altri risultati Nascondi altri risultati su Intuizionismo (3)
Mostra Tutti

La civiltà islamica: antiche e nuove tradizioni in matematica. La tradizione araba del Libro X degli Elementi

Storia della Scienza (2002)

La civilta islamica: antiche e nuove tradizioni in matematica. La tradizione araba del Libro X degli Elementi Marouane Ben Miled La tradizione araba del Libro X degli Elementi La storia delle letture [...] rette di due mediali compaiono in forme algebriche del tipo a+b, dove a e b sono radici 2n-esime di numeri razionali positivi non quadrati, tali che a/b non sia razionale (per es., 4√8+4√2 o 4√12+4√3). La prima di due mediali, in questi commenti, è ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La grande scienza. Teoria dei numeri

Storia della Scienza (2003)

La grande scienza. Teoria dei numeri Anatolij A. Karatsuba Teoria dei numeri La teoria dei numeri o, adottando una locuzione di Carl Friedrich Gauss (1777-1855), l'aritmetica superiore, è lo studio [...] Trenta Leo Mordell congetturò che su una curva F(x,y)=0 di genere almeno 1, giace un numero finito di 'punti razionali' (punti le cui coordinate sono numeri razionali). In particolare, se n≥3 allora l'equazione di Fermat si trasforma in F(x,y)=xn+yn ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA

La Rivoluzione scientifica: i domini della conoscenza. La rivoluzione cartesiana e gli sviluppi della geometria

Storia della Scienza (2002)

La Rivoluzione scientifica: i domini della conoscenza. La rivoluzione cartesiana e gli sviluppi della geometria Emily Grosholz La rivoluzione cartesiana e gli sviluppi della geometria La rivoluzione [...] l'avrebbe portato a sollevare l'imbarazzante problema delle grandezze irrazionali e della loro eterogeneità rispetto ai numeri razionali. è dunque Fermat, più che Descartes, a sfruttare l'ambivalenza della notazione algebrica. John Wallis, nell ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica Solomon Feferman Le scuole di filosofia della matematica I più importanti programmi di fondazione della [...] (p,q) se e solo se n/m=p/q, ossia nq=mp. La rappresentazione di Cantor dei numeri reali prende una successione di numeri razionali r=(r0,…,rn,…) per rappresentare quando r soddisfa il criterio (interno) di convergenza di Cauchy; allora r=(r0,…,rn ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

La civiltà islamica: antiche e nuove tradizioni in matematica. Aritmetica

Storia della Scienza (2002)

La civilta islamica: antiche e nuove tradizioni in matematica. Aritmetica Pascal Crozet Aritmetica Se ciò che in questa sede intendiamo per aritmetica si ricollega in generale al calcolo con quantità [...] più nella forma generale In al-Uqlīdisī e i suoi successori le frazioni sono indicate scrivendo in colonna i numeri razionali positivi scrivendo forma che si ottiene, come abbiamo osservato, con il procedimento di divisione di due interi. Per ... Leggi Tutto
CATEGORIA: ARITMETICA – STORIA DELLA MATEMATICA

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Il Bourbakismo Jean-Paul Pier Il Bourbakismo L'avvento e l'influenza di Bourbaki costituiscono uno dei fenomeni più sorprendenti nella matematica [...] frazioni. Si arriva così ai corpi, ai domini di integrità, agli ideali primi e finalmente al campo dei numeri razionali; infine si definiscono i limiti proiettivi e induttivi. Il secondo capitolo tratta l'algebra lineare. Introduce innanzi tutto ... Leggi Tutto
CATEGORIA: ALGEBRA – GEOMETRIA – STORIA DELLA MATEMATICA

Misura e integrazione

Enciclopedia del Novecento (1979)

Misura e integrazione M. Evans Munroe Introduzione La nozione di integrale viene spesso introdotta considerando il problema di determinare l'area racchiusa da una curva, prendendo un limite di somme [...] 0, 1]−S). Essendo allora Sia x∈T; risulta g(x)=χS(x)=0. Sia I un intervallo aperto contenente x. Poiché I contiene numeri razionali, esso interseca S in un insieme aperto non vuoto; esiste dunque un intervallo aperto J⊂I⊂S. Ora, J−Z è non vuoto ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: TEOREMA DELLA CONVERGENZA MONOTONA – FUNZIONALI LINEARI CONTINUI – CONVERGENZA INCONDIZIONATA – INTEGRAZIONE DI LEBESGUE – RELAZIONE DI EQUIVALENZA
1 2 3 4 5 6 7 8 ... 18
Vocabolario
nùmero
numero nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
razionale¹
razionale1 razionale1 agg. [dal lat. rationalis, der. di ratio -onis «ragione»]. – 1. a. Che è fornito, che è dotato di ragione: anima, creatura r.; molti [animali], quasi come razionali ... la notte alle lor case senza alcuno correggimento...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali