• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
lingua italiana
7 risultati
Tutti i risultati [69]
Geometria [7]
Matematica [24]
Biografie [22]
Teatro [5]
Temi generali [4]
Storia della matematica [4]
Diritto [4]
Religioni [3]
Letteratura [3]
Fisica [3]

topologia

Enciclopedia on line

Matematica Lo studio delle proprietà geometriche delle figure che non dipendono dalla nozione di misura, ma sono legate a problemi di deformazione delle figure stesse. Proprietà topologiche La t., che [...] simpliciale risultano essere gruppi abeliani con un numero finito di generatori i cui caratteri (numero di generatori e coefficienti di torsione) prendono il nome di numeri di Betti e di coefficienti di torsione del complesso ovvero della varietà ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: RELAZIONE DI EQUIVALENZA – VARIETÀ DIFFERENZIABILE – COMPLESSO SIMPLICIALE – CALCOLO DIFFERENZIALE – STRUTTURA TOPOLOGICA
Mostra altri risultati Nascondi altri risultati su topologia (6)
Mostra Tutti

Geometria differenziale

Enciclopedia del Novecento (1978)

Geometria differenziale SShoshichi Kobayashi di Shoshichi Kobayashi Geometria differenziale sommario: 1. Cenno storico. 2. Varietà. 3. Geometria riemanniana. 4. Varietà complesse e varietà kähleriane. [...] χ(M) è dato da χ(M)=v−e+f. (55) Alternativamente, se bi è l'i-mo numero di Betti di M, cioè bi=dim Hi(M;R), allora χ(M)=b0−b1+b2=2−b1. (56) La formula di Gauss-Bonnet (54) mostra che un invariante topologico χ(M) può essere espresso come l'integrale ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: EQUAZIONE DIFFERENZIALE ORDINARIA – EQUAZIONI ALLE DERIVATE PARZIALI – FUNZIONI DI VARIABILE COMPLESSA – REGIONE SEMPLICEMENTE CONNESSA – CALCOLO DIFFERENZIALE ASSOLUTO
Mostra altri risultati Nascondi altri risultati su Geometria differenziale (3)
Mostra Tutti

Geometria algebrica

Enciclopedia del Novecento II Supplemento (1998)

GEOMETRIA ALGEBRICA Ciro Ciliberto Igor R. Shafarevich Lo sviluppo delle idee di Ciro Ciliberto Sommario: 1. I temi classici della geometria algebrica. a) Integrali abeliani e curve algebriche. b) [...] uguale alla dimensione q dello spazio delle 1-forme regolari su X. Inoltre, b1 = 2 q, dove b1 è il primo numero di Betti di X. Ogni varietà abeliana A è un toro complesso. Ciò significa che il suo rivestimento universale è isomorfo, come gruppo, a ℂn ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK – ACCADEMIA NAZIONALE DELLE SCIENZE DETTA DEI XL – EQUAZIONI DIFFERENZIALI ALLE DERIVATE PARZIALI – SCUOLA ITALIANA DI GEOMETRIA ALGEBRICA – CARATTERISTICA DI EULERO-POINCARÉ
Mostra altri risultati Nascondi altri risultati su Geometria algebrica (2)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Geometria algebrica Jeremy Gray Geometria algebrica Agli inizi del XX sec. la scuola di punta in geometria algebrica era quella italiana, guidata [...] la varietà proviene da una varietà algebrica definita su ℂ, i coefficienti della funzione devono essere i numeri di Betti della corrispondente varietà complessa. Il motivo per formulare queste congetture sta nell'analogia che Weil supponeva esistesse ... Leggi Tutto
CATEGORIA: GEOMETRIA – STATISTICA E CALCOLO DELLE PROBABILITA

Geometria

Enciclopedia della Scienza e della Tecnica (2007)

Geometria Edoardo Vesentini Nel tracciare i lineamenti essenziali di una storia della matematica, Federigo Enriques osservava nel 1938: "A chi raffronti gli sviluppi che i diversi rami delle matematiche [...] considerata come si dimostra con considerazioni affatto elementari. Esso si chiama il numero di Euler della superficie X (ed è uguale alla somma alternata dei numeri di Betti di X). Due superfici compatte sono omeomorfe se e soltanto se hanno lo ... Leggi Tutto
CATEGORIA: GEOMETRIA
TAGS: ACCADEMIA NAZIONALE DEI LINCEI – SPAZIO TOPOLOGICO COMPATTO – GEOMETRIA DIFFERENZIALE – ALEXANDER GROTHENDIECK – FRIEDRICH HIRZEBRUCH
Mostra altri risultati Nascondi altri risultati su Geometria (13)
Mostra Tutti

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La topologia algebrica all'inizio del XX secolo John McCleary La topologia algebrica all'inizio del XX secolo Le radici della topologia algebrica [...] riveduta di numeri di Betti. Il metodo di dimostrazione fa uso della nozione di suddivisione baricentrica di un complesso di celle geometrico e di quella di celle duali. La suddivisione baricentrica non cambia i numeri di Betti e supponendo ... Leggi Tutto
CATEGORIA: GEOMETRIA

La seconda rivoluzione scientifica: matematica e logica. La scuola di geometria algebrica italiana

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. La scuola di geometria algebrica italiana Alberto Conte Ciro Ciliberto La scuola di geometria algebrica italiana Gli inizi: Luigi Cremona e [...] su una superficie, come la metà del primo numero di Betti della superficie, e come la massima dimensione di sistemi continui di curve non linearmente equivalenti. Sul tentativo di dimostrare questo teorema per via algebrico-geometrica la scuola ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali