• Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
Cerca in:
enciclopedia
biografico
vocabolario
atlante
il chiasmo
lingua italiana
239 risultati
Tutti i risultati [1105]
Matematica [239]
Fisica [145]
Algebra [91]
Temi generali [93]
Biologia [83]
Chimica [80]
Fisica matematica [71]
Medicina [71]
Analisi matematica [60]
Informatica [48]

L'Ottocento: matematica. Analisi complessa

Storia della Scienza (2003)

L'Ottocento: matematica. Analisi complessa Jeremy Gray Analisi complessa Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] XVI sec., almeno nel corso dei due secoli successivi. D'altra parte, è all'inizio del XIX sec. che il dibattito sui numeri complessi si fa più acceso. Si potrebbe supporre che tale dibattito sia scaturito dalle menti più acute e abbia impegnato i più ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Le origini della teoria dei gruppi

Storia della Scienza (2003)

L'Ottocento: matematica. Le origini della teoria dei gruppi Jeremy Gray Le origini della teoria dei gruppi La teoria di Galois e la soluzione algebrica delle equazioni algebriche La teoria di Galois [...] di un gruppo G è una funzione definita su G che preserva il prodotto e assume valori nel gruppo moltiplicativo dei numeri complessi non nulli. Dirichlet aveva utilizzato tale funzione, pur senza pensarla come carattere di un gruppo, del quale a quel ... Leggi Tutto
CATEGORIA: ALGEBRA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea

Storia della Scienza (2003)

L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea Jeremy Gray Dalla geometria proiettiva alla geometria euclidea La geometria proiettiva La carriera del matematico francese [...] . Ciò che si poteva trovare, per esempio nel libro del 1839 di Plücker, era una teoria che interpretava i numeri complessi in termini di involuzioni reali (trasformazioni che coincidono con la propria inversa) prive di punti fissi reali. Il primo ... Leggi Tutto
CATEGORIA: GEOMETRIA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Teoria dei numeri

Storia della Scienza (2003)

L'Ottocento: matematica. Teoria dei numeri Catherine Goldstein Teoria dei numeri Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] fu piuttosto la ricerca delle leggi di reciprocità superiori a giocare un ruolo fondamentale nella genesi delle idee di Kummer. I numeri complessi dei quali si tratta di definire l'aritmetica sono quelli della forma: [8] F(ζ)=a0+a1ζ+…+an-2ζn-2, dove ... Leggi Tutto
CATEGORIA: ALGEBRA – ANALISI MATEMATICA – STORIA DELLA MATEMATICA

L'Ottocento: matematica. Il rigore in analisi

Storia della Scienza (2003)

L'Ottocento: matematica. Il rigore in analisi Umberto Botta Il rigore in analisi L'eredità di Lagrange All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] agli elementi della teoria delle funzioni analitiche mediante la costruzione rigorosa del campo dei numeri reali e dei numeri complessi, preliminare per ogni ulteriore considerazione sulle funzioni. Continuità e insiemi infiniti di punti Il ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA – STORIA DELLA MATEMATICA

La grande scienza. Geometria non commutativa

Storia della Scienza (2003)

La grande scienza. Geometria non commutativa Alain Connes Geometria non commutativa Se si pensa che la geometria sia strettamente legata al nostro modello di spazio-tempo, allora la teoria generale [...] chiusi. Ma non vi è nulla di simile quando si considera la teoria del campo di classe sui numeri complessi, perché il campo complesso è algebricamente chiuso. Ora accade che la teoria dei fattori sia un sostituto non banale della teoria di ... Leggi Tutto
CATEGORIA: GEOMETRIA

Operatori, teoria degli

Enciclopedia del Novecento II Supplemento (1998)

Operatori, teoria degli Helmut H. Schaefer e Manfred P. Wolff Sommario: 1. Introduzione. 2. Operatori lineari fra spazi di dimensione finita. a) Generalità. b) Operatori hermitiani, normali e unitari. [...] cui valgono le condizioni: Queste devono valere per tutti gli x, y, z ∈ E e α ∈ K; per K = C, con ᾱ si intende il numero complesso coniugato di α. Vengono definite su E una norma, ponendo ∥x∥ = (x ∣ x)1/2, e una metrica, con d (x, y) = ∥x - y∥, che ... Leggi Tutto
CATEGORIA: ANALISI MATEMATICA
TAGS: EQUAZIONI ALLE DERIVATE PARZIALI – TEORIA DELLE RAPPRESENTAZIONI – TEORIA QUANTISTICA DEI CAMPI – MOLTIPLICAZIONE FRA MATRICI – TEOREMA DI CAYLEY-HAMILTON

Nodi e fisica

Enciclopedia del Novecento II Supplemento (1998)

Nodi e fisica Louis H. Kauffman Sommario: 1. Introduzione. 2. Come fissare un nodo: le mosse di Reidemeister. 3. Invarianti di nodi e links: un primo passo. 4. Il polinomio di Jones. 5. Il polinomio [...] 〈a∣ : C → V ∣b〉 : V → C. La composizione 〈a∥b〉 = 〈a ∣b〉 : C → C viene allora interpretata come il numero complesso 〈a∣b〉 (1). I numeri complessi sono equiparati al vuoto e l'intera ampiezza 〈a∣b〉 è l'ampiezza da vuoto a vuoto di un processo che ... Leggi Tutto
CATEGORIA: FISICA MATEMATICA – MECCANICA QUANTISTICA – GEOMETRIA
TAGS: TEORIA QUANTISTICA DEI CAMPI – FILOSOFIA DELLA MATEMATICA – EQUAZIONE DI SCHRÖDINGER – CALCOLO DELLE VARIAZIONI – RELAZIONE DI EQUIVALENZA

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica

Storia della Scienza (2004)

La seconda rivoluzione scientifica: matematica e logica. Le scuole di filosofia della matematica Solomon Feferman Le scuole di filosofia della matematica I più importanti programmi di fondazione della [...] e prodotti infiniti nell'analisi venne eliminato a favore di un'utilizzazione rigorosa del concetto di limite per i numeri reali e per i numeri complessi. Inoltre, a quest'ultimo sistema fu dato un solido fondamento con la riduzione al sistema dei ... Leggi Tutto
CATEGORIA: STORIA DELLA MATEMATICA – STORIA DEL PENSIERO FILOSOFICO

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten

Storia della Scienza (2003)

La grande scienza. Geometria numerativa e invarianti di Gromov-Witten Enrico Arbarello Geometria numerativa e invarianti di Gromov-Witten Nel trattato Le coniche, Apollonio di Perge (262-180 a.C. circa) [...] altro modo in cui, eventualmente, si possono perdere alcune intersezioni è quello di limitarsi alle soluzioni reali. I numeri complessi, che compaiono in algebra con le opere di Gerolamo Cardano (1545) e Raffaele Bombelli (1572), fecero irruzione in ... Leggi Tutto
CATEGORIA: GEOMETRIA
1 2 3 4 5 6 7 8 ... 24
Vocabolario
nùmero
numero nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
complèsso¹
complèsso1 agg. [dal lat. complexus, part. pass. di complecti «stringere, comprendere, abbracciare»]. – 1. a. Che risulta dall’unione di più parti o elementi (contr. di semplice): una questione c., un ragionamento c.; che ha diversi aspetti...
Leggi Tutto
  • Istituto
    • Chi Siamo
    • La nostra storia
  • Magazine
    • Agenda
    • Atlante
    • Il Faro
    • Il Chiasmo
    • Diritto
    • Il Tascabile
    • Le Parole Valgono
    • Lingua italiana
    • WebTv
  • Catalogo
    • Le Opere
    • Bottega Treccani
    • Gli Ebook
    • Le Nostre Sedi
  • Scuola e Formazione
    • Portale Treccani Scuola
    • Formazione Digitale
    • Formazione Master
    • Scuola del Tascabile
  • Libri
    • Vai al portale
  • Arte
    • Vai al portale
  • Treccani Cultura
    • Chi Siamo
    • Come Aderire
    • Progetti
    • Iniziative Cultura
    • Eventi Sala Igea
  • ACQUISTA SU EMPORIUM
    • Arte
    • Cartoleria
    • Design & Alto Artigianato
    • Editoria
    • Idee
    • Marchi e Selezioni
  • Accedi
    • Modifica Profilo
    • Treccani X
  • Ricerca
    • Enciclopedia
    • Vocabolario
    • Sinonimi
    • Biografico
    • Indice Alfabetico

Istituto della Enciclopedia Italiana fondata da Giovanni Treccani S.p.A. © Tutti i diritti riservati

Partita Iva 00892411000

  • facebook
  • twitter
  • youtube
  • instagram
  • Contatti
  • Redazione
  • Termini e Condizioni generali
  • Condizioni di utilizzo dei Servizi
  • Informazioni sui Cookie
  • Trattamento dei dati personali