Il Contributo italiano alla storia del Pensiero: Scienze (2013)
Algebra, geometria, indivisibili
Enrico Giusti
Primi progressi nell’algebra
Dopo un periodo di gestazione lungo tre secoli, l’algebra è la prima disciplina in cui nel Cinquecento si registrano sostanziali [...] ha inteso che il detto maestro Antoniomaria vi propose tutti li suoi 30 che vi conducevano in Algebra in un capitolo di cosa e cubo equal a numero. E che voi trovasti regola generale a tal capitolo […]. Et per tanto sua eccellentia vi prega che ...
Leggi Tutto
La grande scienza. Combinatoria
Peter J. Cameron
Combinatoria
Secondo alcuni la combinatoria costituisce soltanto una parte della matematica, secondo altri essa non rappresenta una branca separata, [...] entrambi […] È altrettanto ovvio che branche della matematica diverse richiedono doti diverse. In alcune, come nella teoria algebrica dei numeri, o in quel gruppo di teorie che va complessivamente sotto il nome di Geometria, sembra […] importante per ...
Leggi Tutto
Fermat, ultimo teorema di
Massimo Bertolin
"Cubum autem in duos cubos, aut quadrato quadratum in duos quadrato quadratos, et generaliter nullam in infinitum ultra quadratum potestatem in duos ejusdem [...] sono profondamente legate alla teoria delle estensioni abeliane del campo razionale ℚ. Sia α un numeroalgebrico, cioè un numero complesso che soddisfi un'equazione algebrica p(x)=0, dove p(x) è un polinomio irriducibile a coefficienti razionali non ...
Leggi Tutto
L'Ottocento: matematica. Teoria degli invarianti
Leo Corry
Teoria degli invarianti
L'algebra del XIX sec. ebbe uno sviluppo intenso che coprì numerosi domini. Nuove entità matematiche come gruppi, anelli [...] emersero gradualmente e, specialmente nella seconda metà del secolo, in relazione all'uso di metodi algebrici nella teoria dei numeri e nella geometria. L'argomento classico della ricerca continuò a essere principalmente lo studio delle equazioni ...
Leggi Tutto
matrice
matrice [Der. del lat. matrix -icis "utero, madre"] [LSF] Raro nel signif. di cosa da cui se ne trae un'altra, indica in genere, concret., la struttura principale di un corpo, nella quale eventualmente [...] elementi mhk, è la m. che ha per elementi i complementi algebrici mkh della m. trasposta di M, ognuno diviso per il determinante algebra a base finita e associativa. ◆ [ANM] Analisi delle m.: concerne m. i cui elementi siano funzioni, anziché numeri ...
Leggi Tutto
Campi di numeri
Massimo Bertolini
Sia α un numeroalgebrico, cioè un numero complesso che soddisfa un’equazione algebrica p(x)=0, dove p(x) è un polinomio
di grado n≥1 avente coefficienti nel campo [...] .
Un importante capitolo della teoria algebrica dei numeri si occupa dello studio delle proprietà algebriche e aritmetiche dei campi di numeri. Tale studio coinvolge l’anello OΚ degli interi algebrici di un campo di numeri K, definito come l’insieme ...
Leggi Tutto
parentesi
parèntesi [Der. del lat. parenthesis, dal gr. parénthesis "inserzione", a sua volta comp. di pará "para-2", én "in" e títhemi "porre"] [ALG] [ANM] Simboli grafici, di varia forma e con particolari [...] fisici |a〉 e |b〉, dove a e b rappresentano l'insieme dei numeri quantici che caratterizzano il sistema (→ anche bra e ket); (b) sono , v. cristallo: II 49 c. ◆ [ALG] P. algebriche: raggruppano i monomi di un polinomio o di una funzione che subiscono ...
Leggi Tutto
aritmetica
aritmètica [Der. del lat arithmetìca, dal gr. arithmós "numero"]. Parte della matematica concernente lo studio dei numeri, soprattutto dei numeri interi; il termine, per la prima volta usato [...] ") che hanno qualche parentela con gli interi ordinari: si parla così di un'a. degli interi algebrici, di un'a. dei numeri ordinali trasfiniti, di un'a. relativa a un dato campo d'integrità, ecc. A proposito delle difficoltà che si incontrano nella ...
Leggi Tutto
isomorfismo
Luca Tomassini
Corrispondenza o relazione tra enti matematici o sistemi di enti matematici che esprime l’identità delle loro strutture in un senso opportuno. Un isomorfismo in una categoria [...] relazione all’analisi di enti algebrici concreti (in principio i gruppi) e solo successivamente è stato esteso a una classe più ampia di strutture. Un altro classico esempio di sistemi isomorfi è l’insieme ℝ dei numeri reali considerato come gruppo ...
Leggi Tutto
Selezione di 7 problemi matematici proposti nel 2000 dal Clay Mathematics Institute (CMI) di Cambridge, Massachusetts, che ha stanziato per la risoluzione di ognuno di essi un premio di 1 milione di dollari. [...] i cicli di Hodge sono combinazioni lineari razionali di cicli algebrici.
Congettura di Birch e Swinnerton-Dyer Afferma che si può stabilire se una curva ellittica ha un numero finito o infinito di punti razionali studiando il comportamento, in ...
Leggi Tutto
numero
nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
algebra
àlgebra s. f. [dal lat. mediev. algebra, e questo dall’arabo al-giabr, propr. «restaurazione», e quindi «riduzione» (dapprima nel sign. medico-chirurgico, e poi in quello matematico), che compare la prima volta in un trattato arabo...