La grande scienza. Cronologia scientifica: 1961-1970
1961-1970
1961
Famiglia universale. Il giapponese Masatake Kuranishi mostra che esiste sempre un certo tipo di famiglia olomorfa di strutture complesse [...] disattivazione.
Medaglia Fields
Alan Baker, Gran Bretagna, University of Cambridge, per i lavori sulla teoria dei numeritrascendenti.
Heisuke Hironaka, Giappone, Princeton University, New Jersey, per i suoi studi sulla risoluzione di singolarità di ...
Leggi Tutto
L'Ottocento: matematica. Teoria dei numeri
Catherine Goldstein
Teoria dei numeri
Le tappe più significative dello sviluppo di un settore della scienza o dell'arte si accordano raramente con la suddivisione [...] che queste funzioni hanno rivestito un ruolo molto importante nelle prime dimostrazioni di esistenza dei campi di classi.
Numeritrascendenti
Tra le questioni che ebbero pieno sviluppo soltanto nel XX sec. rilevante è l'esame delle proprietà dei ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. I problemi di Hilbert e la matematica del nuovo secolo
David E. Rowe
I problemi di Hilbert e la matematica del nuovo secolo
Problemi matematici [...] XVIII sec. da Leonhard Euler (1707-1783). Nel 1844 Joseph Liouville (1809-1882) dimostrò l'esistenza dei numeritrascendenti (i numeri che non possono essere radici di un'equazione polinomiale a coefficienti interi). Soltanto trent'anni dopo Cantor ...
Leggi Tutto
La seconda rivoluzione scientifica: matematica e logica. La scuola matematica di Mosca
Sergej Sergeevic Demidov
La scuola matematica di Mosca
La matematica a San Pietroburgo e a Mosca
Nella seconda [...] lavori di Gel′fond di questo periodo si concluse con la sua risoluzione, nel 1934, del VII problema di Hilbert: αβ è un numerotrascendente se α e β sono algebrici, α è diverso da 0 e 1 e β è irrazionale.
In quegli stessi anni Stepanov introdusse i ...
Leggi Tutto
Biologia
C. morfogenetico Area dell’embrione, o del primordio di un germoglio, dotata della capacità di dare origine a un determinato organo; per es., i c. morfogenetici dell’arto posteriore danno origine [...] qualunque di C è un ampliamento algebrico di un ampliamento trascendente puro di C (ottenuto aggiungendo a C un certo numero, finito o infinito, di elementi trascendenti). Con riguardo ai c. più elementarmente noti, se, per es., C è il c. razionale ...
Leggi Tutto
La Rivoluzione scientifica: i domini della conoscenza. Dalla Geometrie al calcolo: il problema delle tangenti...
Enrico Giusti
Dalla Géométrie al calcolo: il problema delle tangenti e le origini del [...] queste curve, ma che non si può utilizzare a causa dell'enorme numero di calcoli che richiede; in breve, non è tanto il carattere algebrico, irrazionale o trascendente della curva a determinare l'applicabilità del metodo, quanto la maggiore o ...
Leggi Tutto
L'Ottocento: matematica. Analisi complessa
Jeremy Gray
Analisi complessa
Lo sviluppo dell'analisi complessa è una delle caratteristiche salienti della matematica del XIX secolo. Lo studio di funzioni [...] altra parte, è all'inizio del XIX sec. che il dibattito sui numeri complessi si fa più acceso. Si potrebbe supporre che tale dibattito sia Cauchy definisce le funzioni algebriche e trascendenti elementari di una variabile complessa. Tuttavia ...
Leggi Tutto
L'Ottocento: matematica. Dalla geometria proiettiva alla geometria euclidea
Jeremy Gray
Dalla geometria proiettiva alla geometria euclidea
La geometria proiettiva
La carriera del matematico francese [...] trascendenti non fossero considerate argomento della geometria e infatti una delle più semplici tra queste, la cicloide, fu oggetto di numerose che passano per ogni punto multiplo della curva il giusto numero di volte (j−1 volte per ogni punto j-uplo ...
Leggi Tutto
L'Ottocento: matematica. Il rigore in analisi
Umberto Botta
Il rigore in analisi
L'eredità di Lagrange
All'epoca della Rivoluzione francese, l'esigenza di formare una classe di ingegneri civili e militari [...] e che, da questo punto di vista, una questione di teoria dei numeri vale tanto quanto una relativa al sistema del mondo" (Jacobi 1881-91 o funzioni trascendenti, come le funzioni trigonometriche o quella logaritmica e trascendente di ordine superiore ...
Leggi Tutto
numero
nùmero s. m. [dal lat. numĕrus; cfr. novero]. – 1. Ciascuno degli enti astratti che rappresentano insiemi di unità, ordinati in una successione infinita (serie naturale dei n.) nella quale ogni elemento conta un’unità in più rispetto...
trascendente
trascendènte agg. [dal lat. transcendens -entis, part. pres. di transcendĕre «trascendere»]. – 1. In filosofia (in contrapp. a immanente), detto di termine che specifica il carattere di ciò che è al di là di un limite, soprattutto...